These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 19427418)

  • 21. Comparison of some properties of free and immobilized alpha-amylase by Aspergillus sclerotiorum in calcium alginate gel beads.
    Yagar H; Ertan F; Balkan B
    Prep Biochem Biotechnol; 2008; 38(1):13-23. PubMed ID: 18080907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in morphology of starch-based prothestic thermoplastic material during enzymatic degradation.
    Araújo MA; Cunha AM; Mota M
    J Biomater Sci Polym Ed; 2004; 15(10):1263-80. PubMed ID: 15559849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microhardness of starch based biomaterials in simulated physiological conditions.
    Alves NM; Saiz-Arroyo C; Rodriguez-Perez MA; Reis RL; Mano JF
    Acta Biomater; 2007 Jan; 3(1):69-76. PubMed ID: 16996331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.
    Konovalova V; Guzikevich K; Burban A; Kujawski W; Jarzynka K; Kujawa J
    Carbohydr Polym; 2016 Nov; 152():710-717. PubMed ID: 27516322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase.
    Ernest V; Shiny PJ; Mukherjee A; Chandrasekaran N
    Carbohydr Res; 2012 May; 352():60-4. PubMed ID: 22405762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of starch digestion using α-amylase entrapped in pectin-polyvinyl alcohol blend.
    Cruz M; Fernandes K; Cysneiros C; Nassar R; Caramori S
    Biomed Res Int; 2015; 2015():145903. PubMed ID: 25949991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films.
    Meridor D; Gedanken A
    Ultrason Sonochem; 2013 Jan; 20(1):425-31. PubMed ID: 22800814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.
    Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B
    Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. α-Amylase@Ferria: Magnetic Nanocomposites with Enhanced Thermal Stability for Starch Hydrolysis.
    Astafyeva BV; Shapovalova OE; Drozdov AS; Vinogradov VV
    J Agric Food Chem; 2018 Aug; 66(30):8054-8060. PubMed ID: 29976057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation.
    Tan Y; Xu K; Li L; Liu C; Song C; Wang P
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):956-9. PubMed ID: 20356023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface structural investigation of starch-based biomaterials.
    Pashkuleva I; Azevedo HS; Reis RL
    Macromol Biosci; 2008 Feb; 8(2):210-9. PubMed ID: 17849430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new potentiometric sensor for the determination of α-amylase activity.
    Sakac N; Sak-Bosnar M; Horvat M; Madunić-Cacić D; Szechenyi A; Kovacs B
    Talanta; 2011 Feb; 83(5):1606-12. PubMed ID: 21238759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are sonochemically prepared alpha-amylase protein microspheres biologically active?
    Avivi Levi S; Gedanken A
    Ultrason Sonochem; 2007 Jan; 14(1):1-5. PubMed ID: 16403481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extruding foams from corn starch acetate and native corn starch.
    Guan J; Hanna MA
    Biomacromolecules; 2004; 5(6):2329-39. PubMed ID: 15530049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of porous poly(D,L-lactic-co-glycolic acid) films based on water diffusion.
    Huang YY; Qi M; Liu HZ; Zhao H; Yang DZ
    J Biomed Mater Res A; 2007 Mar; 80(4):909-15. PubMed ID: 17072856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of alpha-amylase to a composite temperature-sensitive membrane for starch hydrolysis.
    Chen JP; Sun YM; Chu DH
    Biotechnol Prog; 1998; 14(3):473-8. PubMed ID: 9622529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of alpha-amylase and glucoamylase.
    López C; Torrado A; Fuciños P; Guerra NP; Pastrana L
    J Agric Food Chem; 2004 May; 52(10):2907-14. PubMed ID: 15137834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic alpha-amylase.
    Slaughter SL; Ellis PR; Jackson EC; Butterworth PJ
    Biochim Biophys Acta; 2002 May; 1571(1):55-63. PubMed ID: 12031290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and properties of midgut alpha-amylase isolated from Morimus funereus (Coleoptera: Cerambycidae) larvae.
    Dojnov B; Bozić N; Nenadović V; Ivanović J; Vujcić Z
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jan; 149(1):153-60. PubMed ID: 17942357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The release of bovine serum albumin from polyurethane based hydrophilic and hydrophobic disks and microbiological interactions.
    Pulat M; Ekmekci A; Aslim B
    Biomed Mater Eng; 2006; 16(2):147-56. PubMed ID: 16477123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.