BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19427479)

  • 1. Application of near infrared spectroscopy and multivariate control charts for monitoring biodiesel blends.
    de Oliveira IK; Rocha WF; Poppi RJ
    Anal Chim Acta; 2009 May; 642(1-2):217-21. PubMed ID: 19427479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate near infrared spectroscopy models for predicting the methyl esters content in biodiesel.
    Baptista P; Felizardo P; Menezes JC; Correia MJ
    Anal Chim Acta; 2008 Jan; 607(2):153-9. PubMed ID: 18190803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate control charts based on net analyte signal (NAS) and Raman spectroscopy for quality control of carbamazepine.
    Rocha WF; Poppi RJ
    Anal Chim Acta; 2011 Oct; 705(1-2):35-40. PubMed ID: 21962345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of biodiesel-diesel blends quality using 1H NMR and chemometrics.
    Monteiro MR; Ambrozin AR; da Silva Santos M; Boffo EF; Pereira-Filho ER; Lião LM; Ferreira AG
    Talanta; 2009 May; 78(3):660-4. PubMed ID: 19269408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate near infrared spectroscopy models for predicting the iodine value, CFPP, kinematic viscosity at 40 degrees C and density at 15 degrees C of biodiesel.
    Baptista P; Felizardo P; Menezes JC; Neiva Correia MJ
    Talanta; 2008 Oct; 77(1):144-51. PubMed ID: 18804612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using near-infrared overtone regions to determine biodiesel content and adulteration of diesel/biodiesel blends with vegetable oils.
    de Vasconcelos FV; de Souza PF; Pimentel MF; Pontes MJ; Pereira CF
    Anal Chim Acta; 2012 Feb; 716():101-7. PubMed ID: 22284883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening analysis to detect adulteration in diesel/biodiesel blends using near infrared spectrometry and multivariate classification.
    Pontes MJ; Pereira CF; Pimentel MF; Vasconcelos FV; Silva AG
    Talanta; 2011 Sep; 85(4):2159-65. PubMed ID: 21872073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate near infrared spectroscopy models for predicting methanol and water content in biodiesel.
    Felizardo P; Baptista P; Menezes JC; Correia MJ
    Anal Chim Acta; 2007 Jul; 595(1-2):107-13. PubMed ID: 17605989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative method to quantify biodiesel and vegetable oil in diesel-biodiesel blends through
    Shimamoto GG; Bianchessi LF; Tubino M
    Talanta; 2017 Jun; 168():121-125. PubMed ID: 28391830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of residual oil in diesel oil by spectrofluorimetric and chemometric analysis.
    Corgozinho CN; Pasa VM; Barbeira PJ
    Talanta; 2008 Jul; 76(2):479-84. PubMed ID: 18585310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.
    Oliveira FC; Brandão CR; Ramalho HF; da Costa LA; Suarez PA; Rubim JC
    Anal Chim Acta; 2007 Mar; 587(2):194-9. PubMed ID: 17386773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.
    Alves JC; Poppi RJ
    Analyst; 2013 Nov; 138(21):6477-87. PubMed ID: 23991427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net analyte signal based statistical quality control.
    Skibsted ET; Boelens HF; Westerhuis JA; Smilde AK; Broad NW; Rees DR; Witte DT
    Anal Chem; 2005 Nov; 77(22):7103-14. PubMed ID: 16285655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM).
    Alves JC; Poppi RJ
    Talanta; 2013 Jan; 104():155-61. PubMed ID: 23597903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diesel particulate emissions from used cooking oil biodiesel.
    Lapuerta M; Rodríguez-Fernández J; Agudelo JR
    Bioresour Technol; 2008 Mar; 99(4):731-40. PubMed ID: 17368887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of the spray characteristics of biodiesel based on inedible oil.
    Gao Y; Deng J; Li C; Dang F; Liao Z; Wu Z; Li L
    Biotechnol Adv; 2009; 27(5):616-24. PubMed ID: 19409479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.
    Di Y; Cheung CS; Huang Z
    Sci Total Environ; 2009 Jan; 407(2):835-46. PubMed ID: 18947856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the preparation of biodiesel from Zanthoxylum bungeanum Maxim seed oil.
    Yang FX; Su YQ; Li XH; Zhang Q; Sun RC
    J Agric Food Chem; 2008 Sep; 56(17):7891-6. PubMed ID: 18683943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.
    Brandão LF; Braga JW; Suarez PA
    J Chromatogr A; 2012 Feb; 1225():150-7. PubMed ID: 22257926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the polar content of used cooking oils on the biodiesel quality.
    Van Hoed V; Ersungur S; Maes J; Zaykina N; De Meulenaer B; De Greyt W; Verhe R
    Commun Agric Appl Biol Sci; 2008; 73(1):23-6. PubMed ID: 18831239
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.