These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19427544)

  • 1. A method for mapping response fields and determining intrinsic reference frames of single-unit activity: applied to 3D head-unrestrained gaze shifts.
    Keith GP; DeSouza JF; Yan X; Wang H; Crawford JD
    J Neurosci Methods; 2009 May; 180(1):171-84. PubMed ID: 19427544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frames of reference for gaze saccades evoked during stimulation of lateral intraparietal cortex.
    Constantin AG; Wang H; Martinez-Trujillo JC; Crawford JD
    J Neurophysiol; 2007 Aug; 98(2):696-709. PubMed ID: 17553952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frames of reference for eye-head gaze commands in primate supplementary eye fields.
    Martinez-Trujillo JC; Medendorp WP; Wang H; Crawford JD
    Neuron; 2004 Dec; 44(6):1057-66. PubMed ID: 15603747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts.
    Sadeh M; Sajad A; Wang H; Yan X; Crawford JD
    Eur J Neurosci; 2015 Dec; 42(11):2934-51. PubMed ID: 26448341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
    Constantin AG; Wang H; Monteon JA; Martinez-Trujillo JC; Crawford JD
    Neuroscience; 2009 Dec; 164(3):1284-302. PubMed ID: 19733631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye, head, and body coordination during large gaze shifts in rhesus monkeys: movement kinematics and the influence of posture.
    McCluskey MK; Cullen KE
    J Neurophysiol; 2007 Apr; 97(4):2976-91. PubMed ID: 17229827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
    Knight TA; Fuchs AF
    J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts.
    DeSouza JF; Keith GP; Yan X; Blohm G; Wang H; Crawford JD
    J Neurosci; 2011 Dec; 31(50):18313-26. PubMed ID: 22171035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variables contributing to the coordination of rapid eye/head gaze shifts.
    Hanes DA; McCollum G
    Biol Cybern; 2006 Apr; 94(4):300-24. PubMed ID: 16538479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference frames for reach planning in macaque dorsal premotor cortex.
    Batista AP; Santhanam G; Yu BM; Ryu SI; Afshar A; Shenoy KV
    J Neurophysiol; 2007 Aug; 98(2):966-83. PubMed ID: 17581846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference frames for representing visual and tactile locations in parietal cortex.
    Avillac M; Denève S; Olivier E; Pouget A; Duhamel JR
    Nat Neurosci; 2005 Jul; 8(7):941-9. PubMed ID: 15951810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual-vestibular interaction hypothesis for the control of orienting gaze shifts by brain stem omnipause neurons.
    Prsa M; Galiana HL
    J Neurophysiol; 2007 Feb; 97(2):1149-62. PubMed ID: 17108091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of horizontal head movements evoked by auditory and visual targets.
    Fuller JH
    J Vestib Res; 1996; 6(1):1-13. PubMed ID: 8719504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Priming of head premotor circuits during oculomotor preparation.
    Corneil BD; Munoz DP; Olivier E
    J Neurophysiol; 2007 Jan; 97(1):701-14. PubMed ID: 17079344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical stimulation of the supplementary eye fields in the head-free macaque evokes kinematically normal gaze shifts.
    Martinez-Trujillo JC; Wang H; Crawford JD
    J Neurophysiol; 2003 Jun; 89(6):2961-74. PubMed ID: 12611991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control.
    Choi WY; Guitton D
    Neuron; 2006 May; 50(3):491-505. PubMed ID: 16675402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first.
    Corneil BD; Elsley JK
    J Neurophysiol; 2005 Jul; 94(1):883-95. PubMed ID: 15728762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring and tracking eye movements of a behaving archer fish by real-time stereo vision.
    Ben-Simon A; Ben-Shahar O; Segev R
    J Neurosci Methods; 2009 Nov; 184(2):235-43. PubMed ID: 19698749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.