These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19427726)

  • 1. Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species.
    Moradi AB; Conesa HM; Robinson BH; Lehmann E; Kaestner A; Schulin R
    Environ Pollut; 2009; 157(8-9):2189-96. PubMed ID: 19427726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler.
    Orłowska E; Przybyłowicz W; Orlowski D; Mongwaketsi NP; Turnau K; Mesjasz-Przybyłowicz J
    Environ Pollut; 2013 Apr; 175():100-9. PubMed ID: 23369753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.
    Boominathan R; Saha-Chaudhury NM; Sahajwalla V; Doran PM
    Biotechnol Bioeng; 2004 May; 86(3):243-50. PubMed ID: 15083504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation.
    Keeling SM; Stewart RB; Anderson CW; Robinson BH
    Int J Phytoremediation; 2003; 5(3):235-44. PubMed ID: 14750431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler.
    Orłowska E; Przybyłowicz W; Orlowski D; Turnau K; Mesjasz-Przybyłowicz J
    Environ Pollut; 2011 Dec; 159(12):3730-8. PubMed ID: 21835516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoaccumulation and tolerance of Riccinus communis L. to nickel.
    Adhikari T; Kumar A
    Int J Phytoremediation; 2012; 14(5):481-92. PubMed ID: 22567726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecophysiology of nickel hyperaccumulating plants from South Africa - from ultramafic soil and mycorrhiza to plants and insects.
    Mesjasz-Przybyłowicz J; Przybyłowicz WJ
    Metallomics; 2020 Jul; 12(7):1018-1035. PubMed ID: 32459223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR.
    Tank N; Saraf M
    J Basic Microbiol; 2009 Apr; 49(2):195-204. PubMed ID: 18798171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a 'metal crop' from South Africa.
    Rue M; Paul ALD; Echevarria G; van der Ent A; Simonnot MO; Morel JL
    Metallomics; 2020 Aug; 12(8):1278-1289. PubMed ID: 32558867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization.
    Chen Q; Wong JW
    Sci Total Environ; 2006 Aug; 366(2-3):448-55. PubMed ID: 16815530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil.
    Visioli G; Conti FD; Gardi C; Menta C
    Bull Environ Contam Toxicol; 2014 Apr; 92(4):490-6. PubMed ID: 24288040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizosphere carboxylate concentrations of chickpea are affected by soil bulk density.
    Wouterlood M; Lambers H; Veneklaas EJ
    Plant Biol (Stuttg); 2006 Mar; 8(2):198-203. PubMed ID: 16547864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of soil properties and leaching on nickel toxicity to barley root elongation.
    Li B; Zhang H; Ma Y; McLaughlin MJ
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):459-66. PubMed ID: 21030088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils.
    Doherty JH; Ji B; Casper BB
    Environ Pollut; 2008 Feb; 151(3):593-8. PubMed ID: 17555852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum.
    Becerra-Castro C; Monterroso C; García-Lestón M; Prieto-Fernández A; Acea MJ; Kidd PS
    Int J Phytoremediation; 2009 Aug; 11(6):525-41. PubMed ID: 19810353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil.
    Khan N; Mishra A; Chauhan PS; Sharma YK; Nautiyal CS
    Antonie Van Leeuwenhoek; 2012 Feb; 101(2):453-9. PubMed ID: 21909789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kocuria flava induced growth and chromium accumulation in Cicer arietinum L.
    Singh NK; Rai UN; Verma DK; Rathore G
    Int J Phytoremediation; 2014; 16(1):14-28. PubMed ID: 24912212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.).
    Kambhampati MS; Vu VT
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):310-3. PubMed ID: 23912229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology of Matricaria chamomilla exposed to nickel excess.
    Kovácik J; Klejdus B; Kaduková J; Backor M
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):603-9. PubMed ID: 18242701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.