BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19427819)

  • 1. Redox properties of engineered ruthenium myoglobin.
    Li CZ; Taniguchi I; Mulchandani A
    Bioelectrochemistry; 2009 Jun; 75(2):182-8. PubMed ID: 19427819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of ruthenium(II) and ruthenium(III) myoglobin and the reaction of dioxygen, and carbon monoxide, with ruthenium(II) myoglobin.
    Paulson DR; Addison AW; Dolphin D; James BR
    J Biol Chem; 1979 Aug; 254(15):7002-6. PubMed ID: 572363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-transfer chemistry of Ru-linker-(heme)-modified myoglobin: rapid intraprotein reduction of a photogenerated porphyrin cation radical.
    Immoos CE; Di Bilio AJ; Cohen MS; Van der Veer W; Gray HB; Farmer PJ
    Inorg Chem; 2004 Jun; 43(12):3593-6. PubMed ID: 15180412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide.
    Li QC; Mabrouk PA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):83-94. PubMed ID: 12459902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox properties of ruthenium nitrosyl porphyrin complexes with different axial ligation: structural, spectroelectrochemical (IR, UV-visible, and EPR), and theoretical studies.
    Singh P; Das AK; Sarkar B; Niemeyer M; Roncaroli F; Olabe JA; Fiedler J; Zális S; Kaim W
    Inorg Chem; 2008 Aug; 47(16):7106-13. PubMed ID: 18646846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional evaluation of heme vinyl groups in myoglobin with symmetric protoheme isomers.
    Mie Y; Yamada C; Hareau GP; Neya S; Uno T; Funasaki N; Nishiyama K; Taniguchi I
    Biochemistry; 2004 Oct; 43(41):13149-55. PubMed ID: 15476408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical and electrogenerated chemiluminescent studies of a trinuclear complex, [((phen)2Ru(dpp))2RhCl2]5+, and its interactions with calf thymus DNA.
    Wang S; Milam J; Ohlin AC; Rambaran VH; Clark E; Ward W; Seymour L; Casey WH; Holder AA; Miao W
    Anal Chem; 2009 May; 81(10):4068-75. PubMed ID: 19358569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direct electron transfer of myoglobin based on the electron tunneling in proteins.
    Li N; Xu JZ; Yao H; Zhu JJ; Chen HY
    J Phys Chem B; 2006 Jun; 110(23):11561-5. PubMed ID: 16771432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the electron transfer of a ferrocene redox probe and a histidine-tagged hemoprotein specifically bound to a nitrilotriacetic-terminated self-assembled monolayer.
    Balland V; Lecomte S; Limoges B
    Langmuir; 2009 Jun; 25(11):6532-42. PubMed ID: 19419181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorinated ruthenium porphyrin as a potential photodynamic therapy agent: synthesis, characterization, DNA binding, and melanoma cell studies.
    Rani-Beeram S; Meyer K; McCrate A; Hong Y; Nielsen M; Swavey S
    Inorg Chem; 2008 Dec; 47(23):11278-83. PubMed ID: 18980373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions.
    Wolf MW; Vargas DA; Lehnert N
    Inorg Chem; 2017 May; 56(10):5623-5635. PubMed ID: 28443661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrochemistry and Raman spectroscopy of sol-gel-encapsulated myoglobin.
    Ray A; Feng M; Tachikawa H
    Langmuir; 2005 Aug; 21(16):7456-60. PubMed ID: 16042479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene.
    Hayashi T; Murata D; Makino M; Sugimoto H; Matsuo T; Sato H; Shiro Y; Hisaeda Y
    Inorg Chem; 2006 Dec; 45(26):10530-6. PubMed ID: 17173408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered metalloregulation of azide binding affinity and reduction potential of horse heart myoglobin.
    Hunter CL; Mauk AG
    Dalton Trans; 2013 Mar; 42(9):3151-5. PubMed ID: 23250011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electrochemistry of myoglobin in titanate nanotubes film.
    Liu A; Wei M; Honma I; Zhou H
    Anal Chem; 2005 Dec; 77(24):8068-74. PubMed ID: 16351157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and O2 binding study of myoglobin having a cobalt porphycene.
    Matsuo T; Tsuruta T; Maehara K; Sato H; Hisaeda Y; Hayashi T
    Inorg Chem; 2005 Dec; 44(25):9391-6. PubMed ID: 16323925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry.
    Moghaddam AB; Ganjali MR; Dinarvand R; Ahadi S; Saboury AA
    Biophys Chem; 2008 Apr; 134(1-2):25-33. PubMed ID: 18243488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of myoglobin with poly(methacrylic acid) at different pH in their layer-by-layer assembly films: an electrochemical study.
    Guo W; Hu N
    Biophys Chem; 2007 Sep; 129(2-3):163-71. PubMed ID: 17566631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly and heterogeneous electron transfer properties of metallo-octacarboxyphthalocyanine complexes on gold electrode.
    Agboola BO; Ozoemena KI
    Phys Chem Chem Phys; 2008 May; 10(17):2399-408. PubMed ID: 18414731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.