These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19427852)

  • 1. Changes in rabbit and cow lens shape and volume upon imposition of anisotonic conditions.
    Kong CW; Gerometta R; Alvarez LJ; Candia OA
    Exp Eye Res; 2009 Oct; 89(4):469-78. PubMed ID: 19427852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between mechanical and osmotic forces in the isolated rabbit lens.
    Zamudio AC; Candia OA
    Exp Eye Res; 2011 Dec; 93(6):798-803. PubMed ID: 21970901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume change of the ocular lens during accommodation.
    Gerometta R; Zamudio AC; Escobar DP; Candia OA
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C797-804. PubMed ID: 17537805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface change of the mammalian lens during accommodation.
    Zamudio AC; Candia OA; Kong CW; Wu B; Gerometta R
    Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1430-5. PubMed ID: 18385280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The significance of the shape of the lens and capsular energy changes in accommodation.
    Fisher RF
    J Physiol; 1969 Mar; 201(1):21-47. PubMed ID: 5775812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between axial length and in vivo human crystalline lens biometry during accommodation: a swept-source optical coherence tomography study.
    Shoji T; Kato N; Ishikawa S; Ibuki H; Yamada N; Kimura I; Shinoda K
    Jpn J Ophthalmol; 2020 Jan; 64(1):93-101. PubMed ID: 31760515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphometric analysis of in vitro human crystalline lenses using digital shadow photogrammetry.
    Mohamed A; Durkee HA; Williams S; Manns F; Ho A; Parel JA; Augusteyn RC
    Exp Eye Res; 2021 Jan; 202():108334. PubMed ID: 33121973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.
    Marussich L; Manns F; Nankivil D; Maceo Heilman B; Yao Y; Arrieta-Quintero E; Ho A; Augusteyn R; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4239-48. PubMed ID: 26161985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
    Martinez-Enriquez E; Sun M; Velasco-Ocana M; Birkenfeld J; Pérez-Merino P; Marcos S
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT600-10. PubMed ID: 27627188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study.
    Hermans EA; Pouwels PJ; Dubbelman M; Kuijer JP; van der Heijde RG; Heethaar RM
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):281-9. PubMed ID: 18676625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro dimensions and curvatures of human lenses.
    Rosen AM; Denham DB; Fernandez V; Borja D; Ho A; Manns F; Parel JM; Augusteyn RC
    Vision Res; 2006 Mar; 46(6-7):1002-9. PubMed ID: 16321421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume changes of an endothelial cell monolayer on exposure to anisotonic media.
    Mazzoni MC; Lundgren E; Arfors KE; Intaglietta M
    J Cell Physiol; 1989 Aug; 140(2):272-80. PubMed ID: 2745562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical investigation of changes in lens shape during accommodation.
    Cabeza-Gil I; Grasa J; Calvo B
    Sci Rep; 2021 May; 11(1):9639. PubMed ID: 33953252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.
    Hahn J; Fromm M; Al Halabi F; Besdo S; Lubatschowski H; Ripken T; Krüger A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5332-43. PubMed ID: 26275131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biometry of primate lenses during immersion in preservation media.
    Augusteyn RC; Rosen AM; Borja D; Ziebarth NM; Parel JM
    Mol Vis; 2006 Jul; 12():740-7. PubMed ID: 16865087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible expression of Na+/myo-inositol cotransporter mRNA in anterior epithelium of bovine lens: affiliation with hypertonicity and cell proliferation.
    Cammarata PR; Xu GT; Huang L; Zhou C; Martin M
    Exp Eye Res; 1997 May; 64(5):745-57. PubMed ID: 9245905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of hypotonic and hypertonic solutions on the fluid content of hydrophilic contact lenses.
    Aiello JP; Insler MS
    Am J Ophthalmol; 1985 May; 99(5):521-3. PubMed ID: 4003485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.