These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19428015)

  • 1. Coupled human erythrocyte velocity field and aggregation measurements at physiological haematocrit levels.
    Dusting J; Kaliviotis E; Balabani S; Yianneskis M
    J Biomech; 2009 Jul; 42(10):1438-1443. PubMed ID: 19428015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion.
    Sugii Y; Nishio S; Okamoto K
    Physiol Meas; 2002 May; 23(2):403-16. PubMed ID: 12051311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Measurement of Turbulence and Particle Kinematics Using Flow Imaging Techniques.
    Hackett EE; Gurka R
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30933053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow.
    Kaliviotis E; Dusting J; Sherwood JM; Balabani S
    Clin Hemorheol Microcirc; 2015 Sep; 63(2):123-48. PubMed ID: 26444611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.
    Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T
    J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
    Lee SJ; Park HW; Jung SY
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1160-6. PubMed ID: 25178007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of stenting on hemorheological parameters: An in vitro investigation under various blood flow conditions.
    Kapnisis K; Seidner H; Prokopi M; Pasias D; Pitsillides C; Anayiotos A; Kaliviotis E
    Clin Hemorheol Microcirc; 2019; 72(4):375-393. PubMed ID: 31006672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique.
    Kaliviotis E; Dusting J; Balabani S
    Med Eng Phys; 2011 Sep; 33(7):824-31. PubMed ID: 20943426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte aggregation at non-steady flow conditions: a comparison of characteristics measured with electrorheology and image analysis.
    Kaliviotis E; Ivanov I; Antonova N; Yianneskis M
    Clin Hemorheol Microcirc; 2010; 44(1):43-54. PubMed ID: 20134092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage.
    Lim WL; Chew YT; Chew TC; Low HT
    J Biomech; 2001 Nov; 34(11):1417-27. PubMed ID: 11672716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ghost Cell Suspensions as Blood Analogue Fluid for Macroscopic Particle Image Velocimetry Measurements.
    Jansen SV; Müller I; Nachtsheim M; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2016 Feb; 40(2):207-12. PubMed ID: 25997837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood Flow Velocimetry in a Microchannel During Coagulation Using Particle Image Velocimetry and Wavelet-Based Optical Flow Velocimetry.
    Kucukal E; Man Y; Gurkan UA; Schmidt BE
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three instruments for measuring red blood cell aggregation.
    Baskurt OK; Uyuklu M; Ulker P; Cengiz M; Nemeth N; Alexy T; Shin S; Hardeman MR; Meiselman HJ
    Clin Hemorheol Microcirc; 2009; 43(4):283-98. PubMed ID: 19996518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals.
    Kim TN; Goodwill PW; Chen Y; Conolly SM; Schaffer CB; Liepmann D; Wang RA
    PLoS One; 2012; 7(6):e38590. PubMed ID: 22761686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of shear stress on erythrocyte aggregation.
    Kim JH; Lee H; Lee BK; Shin S
    Clin Hemorheol Microcirc; 2016; 62(2):165-71. PubMed ID: 26444600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte aggregation: basic aspects and clinical importance.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2013; 53(1-2):23-37. PubMed ID: 22975932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast response characteristics of red blood cell aggregation.
    Kaliviotis E; Yianneskis M
    Biorheology; 2008; 45(6):639-49. PubMed ID: 19065011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.