These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19428015)
21. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. Westerdale J; Belohlavek M; McMahon EM; Jiamsripong P; Heys JJ; Milano M J Ultrasound Med; 2011 Feb; 30(2):187-95. PubMed ID: 21266556 [TBL] [Abstract][Full Text] [Related]
22. Measurement of a velocity field in microvessels using a high resolution PIV technique. Sugii Y; Nishio S; Okamoto K Ann N Y Acad Sci; 2002 Oct; 972():331-6. PubMed ID: 12496037 [TBL] [Abstract][Full Text] [Related]
23. Large scale simulation of red blood cell aggregation in shear flows. Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770 [TBL] [Abstract][Full Text] [Related]
24. Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation. Qin Z; Durand LG; Cloutier G Ultrasound Med Biol; 1998 Feb; 24(2):245-56. PubMed ID: 9550183 [TBL] [Abstract][Full Text] [Related]
25. A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation. Wang T; Xing Z Biomed Mater Eng; 2014; 24(6):2511-7. PubMed ID: 25226952 [TBL] [Abstract][Full Text] [Related]
26. A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model. Clauser J; Knieps MS; Büsen M; Ding A; Schmitz-Rode T; Steinseifer U; Arens J; Cattaneo G Ann Biomed Eng; 2018 Jun; 46(6):841-848. PubMed ID: 29488139 [TBL] [Abstract][Full Text] [Related]
27. Electrostatic repulsion among erythrocytes in tube flow, demonstrated by the thickness of marginal cell-free layer. Suzuki Y; Tateishi N; Maeda N Biorheology; 1998; 35(2):155-70. PubMed ID: 10193487 [TBL] [Abstract][Full Text] [Related]
28. Biorheological action of Ascaris lumbricoides larvae on human erythrocytes. de León PP; Del Balzo G; Riquelme B Cell Biochem Biophys; 2013 Mar; 65(2):237-42. PubMed ID: 22990360 [TBL] [Abstract][Full Text] [Related]
30. Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation. Mehri R; Mavriplis C; Fenech M J Vis Exp; 2015 Jun; (100):e52719. PubMed ID: 26065667 [TBL] [Abstract][Full Text] [Related]
31. Velocity measurement accuracy in optical microhemodynamics: experiment and simulation. Chayer B; L Pitts K; Cloutier G; Fenech M Physiol Meas; 2012 Oct; 33(10):1585-602. PubMed ID: 22945542 [TBL] [Abstract][Full Text] [Related]
32. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
33. Study of erythrocyte aggregation at pulsatile flow conditions with backscattering analysis. Nam JH; Xue S; Lim H; Shin S Clin Hemorheol Microcirc; 2012; 50(4):257-66. PubMed ID: 22240363 [TBL] [Abstract][Full Text] [Related]
34. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood. Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms. Ho WH; Tshimanga IJ; Ngoepe MN; Jermy MC; Geoghegan PH Cardiovasc Eng Technol; 2020 Feb; 11(1):14-23. PubMed ID: 31820351 [TBL] [Abstract][Full Text] [Related]
36. [Age and whole blood viscoelasticity. A risk factor study]. Oder W; Kollegger H; Baumgartner C; Zeiler K; Oder B; Deecke L Acta Med Austriaca; 1991; 18 Suppl 1():71-4. PubMed ID: 1950394 [TBL] [Abstract][Full Text] [Related]
37. On the effect of microstructural changes of blood on energy dissipation in Couette flow. Kaliviotis E; Yianneskis M Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131 [TBL] [Abstract][Full Text] [Related]
38. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. Kheradvar A; Houle H; Pedrizzetti G; Tonti G; Belcik T; Ashraf M; Lindner JR; Gharib M; Sahn D J Am Soc Echocardiogr; 2010 Jan; 23(1):86-94. PubMed ID: 19836203 [TBL] [Abstract][Full Text] [Related]
39. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Browne P; Ramuzat A; Saxena R; Yoganathan AP Ann Biomed Eng; 2000 Jan; 28(1):39-47. PubMed ID: 10645786 [TBL] [Abstract][Full Text] [Related]
40. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. Bagchi P; Johnson PC; Popel AS J Biomech Eng; 2005 Dec; 127(7):1070-80. PubMed ID: 16502649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]