BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19428247)

  • 1. Multiple catalytic aldolase antibodies suitable for chemical programming.
    Goswami RK; Huang ZZ; Forsyth JS; Felding-Habermann B; Sinha SC
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3821-4. PubMed ID: 19428247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of integrin alpha(v)beta3-targeting Ab 38C2 constructs.
    Sinha SC; Das S; Li LS; Lerner RA; Barbas CF
    Nat Protoc; 2007; 2(2):449-56. PubMed ID: 17406606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-lactam-based approach for the chemical programming of aldolase antibody 38C2.
    Gavrilyuk JI; Wuellner U; Barbas CF
    Bioorg Med Chem Lett; 2009 Mar; 19(5):1421-4. PubMed ID: 19181522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective aldol cyclodehydrations catalyzed by antibody 38C2.
    List B; Lerner RA; Barbas CF
    Org Lett; 1999 Jul; 1(1):59-61. PubMed ID: 10822533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy.
    Rader C; Turner JM; Heine A; Shabat D; Sinha SC; Wilson IA; Lerner RA; Barbas CF
    J Mol Biol; 2003 Sep; 332(4):889-99. PubMed ID: 12972259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient antibody-catalyzed deuteration of carbonyl compounds.
    Shulman A; Sitry D; Shulman H; Keinan E
    Chemistry; 2002 Jan; 8(1):229-39. PubMed ID: 11822454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction properties of catalytic antibodies encapsulated in organo substituted SiO2 sol-gel materials.
    Kato K; Saito T; Seelan S; Tomita M; Yokogawa Y
    J Biosci Bioeng; 2005 Oct; 100(4):478-80. PubMed ID: 16310742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope.
    Barbas CF; Heine A; Zhong G; Hoffmann T; Gramatikova S; Björnestedt R; List B; Anderson J; Stura EA; Wilson IA; Lerner RA
    Science; 1997 Dec; 278(5346):2085-92. PubMed ID: 9405338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of aldolase antibodies in vitro: correlation of catalytic activity and reaction-based selection.
    Tanaka F; Fuller R; Shim H; Lerner RA; Barbas CF
    J Mol Biol; 2004 Jan; 335(4):1007-18. PubMed ID: 14698295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Programmed Bispecific Antibody Targeting Legumain Protease and αvβ3 Integrin Mediates Strong Antitumor Effects.
    Liu Y; Goswami RK; Liu C; Sinha SC
    Mol Pharm; 2015 Jul; 12(7):2544-50. PubMed ID: 26024761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cofactor approach to copper-dependent catalytic antibodies.
    Nicholas KM; Wentworth P; Harwig CW; Wentworth AD; Shafton A; Janda KD
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2648-53. PubMed ID: 11880619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of the aldolase antibody-derived chemical-antibodies targeting α5β1 integrin.
    Goswami RK; Liu Y; Liu C; Lerner RA; Sinha SC
    Mol Pharm; 2013 Feb; 10(2):538-43. PubMed ID: 23102054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibody-catalyzed benzoin oxidation as a mechanistic probe for nucleophilic catalysis by an active site lysine.
    Sklute G; Oizerowich R; Shulman H; Keinan E
    Chemistry; 2004 May; 10(9):2159-65. PubMed ID: 15112204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potent inhibition of HIV-1 entry with a chemically programmed antibody aided by an efficient organocatalytic synthesis.
    Gavrilyuk J; Uehara H; Otsubo N; Hessell A; Burton DR; Barbas CF
    Chembiochem; 2010 Oct; 11(15):2113-8. PubMed ID: 20845359
    [No Abstract]   [Full Text] [Related]  

  • 15. The antibody catalysis route to the total synthesis of epothilones.
    Sinha SC; Barbas CF; Lerner RA
    Proc Natl Acad Sci U S A; 1998 Dec; 95(25):14603-8. PubMed ID: 9843936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-selective mechanisms in biocatalysis demonstrated with a versatile and efficient aldolase antibody.
    Shulman H; Keinan E
    Bioorg Med Chem Lett; 1999 Jul; 9(13):1745-50. PubMed ID: 10406635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic antibody route to the naturally occurring epothilones: total synthesis of epothilones A-F.
    Sinha SC; Sun J; Miller GP; Wartmann M; Lerner RA
    Chemistry; 2001 Apr; 7(8):1691-702. PubMed ID: 11349910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldol sensors for the rapid generation of tunable fluorescence by antibody catalysis.
    List B; Barbas CF; Lerner RA
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15351-5. PubMed ID: 9860972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sets of aldolase antibodies with antipodal reactivities. Formal synthesis of epothilone E by large-scale antibody-catalyzed resolution of thiazole aldol.
    Sinha SC; Sun J; Miller G; Barbas CF; Lerner RA
    Org Lett; 1999 Nov; 1(10):1623-6. PubMed ID: 10836025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing antibody-catalyzed retro-aldol-retro-Michael reactions.
    Tanaka F; Kerwin L; Kubitz D; Lerner RA; Barbas CF
    Bioorg Med Chem Lett; 2001 Nov; 11(22):2983-6. PubMed ID: 11677141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.