These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19428289)

  • 21. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step affinity purification of recombinant TATA binding proteins utilizing a modular protein interaction partner.
    Shooltz DD; Alberts GL; Triezenberg SJ
    Protein Expr Purif; 2008 Jun; 59(2):297-301. PubMed ID: 18397834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Presence of the anti-leukemic nucleotide analog, 2-chloro-2'-deoxyadenosine-5'-monophosphate, in a promoter sequence alters DNA binding of TATA-binding protein (TBP).
    Hartman WR; Walters DE; Hentosh P
    Arch Biochem Biophys; 2007 Mar; 459(2):223-32. PubMed ID: 17320040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antigen-binding properties of monoclonal antibodies reactive with human TATA-binding protein and use in immunoaffinity chromatography.
    Thompson NE; Foley KM; Burgess RR
    Protein Expr Purif; 2004 Aug; 36(2):186-97. PubMed ID: 15249040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversal of halophilicity in a protein-DNA interaction by limited mutation strategy.
    Bergqvist S; Williams MA; O'Brien R; Ladbury JE
    Structure; 2002 May; 10(5):629-37. PubMed ID: 12015146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling.
    Pflüger K; Ehrenreich A; Salmon K; Gunsalus RP; Deppenmeier U; Gottschalk G; Müller V
    FEMS Microbiol Lett; 2007 Dec; 277(1):79-89. PubMed ID: 17986088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of multiprotein bridging factor 1 in archaea: bridging the domains?
    de Koning B; Blombach F; Wu H; Brouns SJ; van der Oost J
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):52-7. PubMed ID: 19143601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans.
    Suharti S; Murakami KS; de Vries S; Ferry JG
    Biochemistry; 2008 Nov; 47(44):11528-35. PubMed ID: 18842001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional and structural characterization of the Methanosarcina mazei proteasome and PAN complexes.
    Medalia N; Sharon M; Martinez-Arias R; Mihalache O; Robinson CV; Medalia O; Zwickl P
    J Struct Biol; 2006 Oct; 156(1):84-92. PubMed ID: 16690322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the NrpR regulon in Methanosarcina mazei Gö1.
    Weidenbach K; Ehlers C; Kock J; Ehrenreich A; Schmitz RA
    Arch Microbiol; 2008 Sep; 190(3):319-32. PubMed ID: 18415079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription in the archaea: basal factors, regulation, and stress gene expression.
    Hickey AJ; Conway de Macario E; Macario AJ
    Crit Rev Biochem Mol Biol; 2002; 37(4):199-258. PubMed ID: 12236465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA.
    Coker JA; DasSarma S
    BMC Genet; 2007 Sep; 8():61. PubMed ID: 17892563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environment specific substitution tables for thermophilic proteins.
    Mizuguchi K; Sele M; Cubellis MV
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural correlates of the temperature sensitive phenotype derived from saturation mutagenesis studies of CcdB.
    Bajaj K; Dewan PC; Chakrabarti P; Goswami D; Barua B; Baliga C; Varadarajan R
    Biochemistry; 2008 Dec; 47(49):12964-73. PubMed ID: 19006334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal unfolding of the archaeal DNA and RNA binding protein Ssh10.
    Wu X; Oppermann M; Berndt KD; Bergman T; Jörnvall H; Knapp S; Oppermann U
    Biochem Biophys Res Commun; 2008 Sep; 373(4):482-7. PubMed ID: 18571501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallization and preliminary X-ray analysis of TBP-interacting protein from the hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1.
    Yamamoto T; Matsuda T; Sakamoto N; Matsumura H; Inoue T; Morikawa M; Kanaya S; Kai Y
    Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):372-4. PubMed ID: 12554957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salt-mediated electrostatics in the association of TATA binding proteins to DNA: a combined molecular mechanics/Poisson-Boltzmann study.
    Bredenberg JH; Russo C; Fenley MO
    Biophys J; 2008 Jun; 94(12):4634-45. PubMed ID: 18326635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150 degrees C.
    Tanaka T; Sawano M; Ogasahara K; Sakaguchi Y; Bagautdinov B; Katoh E; Kuroishi C; Shinkai A; Yokoyama S; Yutani K
    FEBS Lett; 2006 Jul; 580(17):4224-30. PubMed ID: 16831434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.