These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 19428400)

  • 1. The role of dual-task and task-switch in prospective memory: behavioural data and neural correlates.
    Bisiacchi PS; Schiff S; Ciccola A; Kliegel M
    Neuropsychologia; 2009 Apr; 47(5):1362-73. PubMed ID: 19428400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The control of memory retrieval: insights from event-related potentials.
    Werkle-Bergner M; Mecklinger A; Kray J; Meyer P; Düzel E
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):599-614. PubMed ID: 16099369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective memory and working memory: asymmetrical effects during frontal lobe TMS stimulation.
    Basso D; Ferrari M; Palladino P
    Neuropsychologia; 2010 Sep; 48(11):3282-90. PubMed ID: 20637788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of prospective memory across the lifespan.
    Zöllig J; West R; Martin M; Altgassen M; Lemke U; Kliegel M
    Neuropsychologia; 2007 Nov; 45(14):3299-314. PubMed ID: 17675111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionating the cognitive control required to bring about a change in task: a dense-sensor event-related potential study.
    Astle DE; Jackson GM; Swainson R
    J Cogn Neurosci; 2008 Feb; 20(2):255-67. PubMed ID: 18275333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of dual-task performance after minimizing task-preparation.
    Erickson KI; Colcombe SJ; Wadhwa R; Bherer L; Peterson MS; Scalf PE; Kramer AF
    Neuroimage; 2005 Dec; 28(4):967-79. PubMed ID: 16109493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of characteristics of target cues on task interference from prospective memory.
    Chen Y; Huang X; Jackson T; Yang H
    Neuroreport; 2009 Jan; 20(1):81-6. PubMed ID: 18978643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of prospective and retrospective memory.
    West R; Krompinger J
    Neuropsychologia; 2005; 43(3):418-33. PubMed ID: 15707617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prospective memory in normal aging and Alzheimer's disease].
    Eusop-Roussel E; Ergis AM
    Psychol Neuropsychiatr Vieil; 2008 Dec; 6(4):277-86. PubMed ID: 19087909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The temporal dynamics of prospective memory: a review of the ERP and prospective memory literature.
    West R
    Neuropsychologia; 2011 Jul; 49(8):2233-45. PubMed ID: 21187107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioural and neurophysiological correlates of bivalent and univalent responses during task switching.
    Mueller SC; Swainson R; Jackson GM
    Brain Res; 2007 Jul; 1157():56-65. PubMed ID: 17544384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of cue retrieval, task set reconfiguration, and rule mapping in the explicit cue task switching paradigm.
    Travers S; West R
    Psychophysiology; 2008 Jul; 45(4):588-601. PubMed ID: 18282198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of prospective memory deficits in mild cognitive impairment of suspected Alzheimer's disease etiology using a novel event-based prospective memory task.
    Blanco-Campal A; Coen RF; Lawlor BA; Walsh JB; Burke TE
    J Int Neuropsychol Soc; 2009 Jan; 15(1):154-9. PubMed ID: 19128540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When goals collide: the interaction between prospective memory and task switching.
    West R; Scolaro AJ; Bailey K
    Can J Exp Psychol; 2011 Mar; 65(1):38-47. PubMed ID: 21443329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differential effects of Sternberg short- and long-term memory scanning on the late Nd and P300 in a dual-task paradigm.
    Singhal A; Fowler B
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):124-32. PubMed ID: 15325420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct neurophysiological mechanisms mediate mixing costs and switch costs.
    Wylie GR; Murray MM; Javitt DC; Foxe JJ
    J Cogn Neurosci; 2009 Jan; 21(1):105-18. PubMed ID: 18476759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of spatial information in advance task-set control: an event-related potential study.
    Astle DE; Jackson GM; Swainson R
    Eur J Neurosci; 2008 Oct; 28(7):1404-18. PubMed ID: 18973567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Episodic action memory for real objects: an ERP investigation with perform, watch, and imagine action encoding tasks versus a non-action encoding task.
    Senkfor AJ; Van Petten C; Kutas M
    J Cogn Neurosci; 2002 Apr; 14(3):402-19. PubMed ID: 11970800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.