These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19428466)

  • 1. Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness.
    Baldasseroni F; Pascarella S
    Int J Biol Macromol; 2009 May; 44(4):353-60. PubMed ID: 19428466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.
    Maugini E; Tronelli D; Bossa F; Pascarella S
    Comput Biol Chem; 2009 Apr; 33(2):137-48. PubMed ID: 18845483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes.
    Tronelli D; Maugini E; Bossa F; Pascarella S
    FEBS J; 2007 Sep; 274(17):4595-608. PubMed ID: 17697122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus.
    Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ
    J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implication for buried polar contacts and ion pairs in hyperthermostable enzymes.
    Matsui I; Harata K
    FEBS J; 2007 Aug; 274(16):4012-22. PubMed ID: 17683331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications.
    Unsworth LD; van der Oost J; Koutsopoulos S
    FEBS J; 2007 Aug; 274(16):4044-56. PubMed ID: 17683334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophilic enzymes and their biotechnological potential.
    Lasa I; Berenguer J
    Microbiologia; 1993 Dec; 9(2):77-89. PubMed ID: 8172694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective factors in thermostability of thermophilic proteins.
    Sadeghi M; Naderi-Manesh H; Zarrabi M; Ranjbar B
    Biophys Chem; 2006 Feb; 119(3):256-70. PubMed ID: 16253416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volsurf computational method applied to the prediction of stability of thermostable enzymes.
    Braiuca P; Buthe A; Ebert C; Linda P; Gardossi L
    Biotechnol J; 2007 Feb; 2(2):214-20. PubMed ID: 17203502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural plasticity of thermophilic serine hydroxymethyltransferases.
    Paiardini A; Gianese G; Bossa F; Pascarella S
    Proteins; 2003 Jan; 50(1):122-34. PubMed ID: 12471605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima.
    Robinson-Rechavi M; Alibés A; Godzik A
    J Mol Biol; 2006 Feb; 356(2):547-57. PubMed ID: 16375925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure and backbone dynamics of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin mutant: a molecular analysis of its reduced thermal stability.
    Leone M; Di Lello P; Ohlenschläger O; Pedone EM; Bartolucci S; Rossi M; Di Blasio B; Pedone C; Saviano M; Isernia C; Fattorusso R
    Biochemistry; 2004 May; 43(20):6043-58. PubMed ID: 15147188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein stability at high temperatures.
    Cowan DA
    Essays Biochem; 1995; 29():193-207. PubMed ID: 9189721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural genomics of thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability.
    Robinson-Rechavi M; Godzik A
    Structure; 2005 Jun; 13(6):857-60. PubMed ID: 15939017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability.
    Thompson MJ; Eisenberg D
    J Mol Biol; 1999 Jul; 290(2):595-604. PubMed ID: 10390356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures.
    Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Perugino G; Bertoli E; Scirè A; Rossi M; Tanfani F; Moracci M
    Proteins; 2007 Jun; 67(4):991-1001. PubMed ID: 17357157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The subunit interfaces of oligomeric enzymes are conserved to a similar extent to the overall protein sequences.
    Grishin NV; Phillips MA
    Protein Sci; 1994 Dec; 3(12):2455-8. PubMed ID: 7757001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms.
    Glyakina AV; Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2007 Sep; 23(17):2231-8. PubMed ID: 17599925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some like it cold: biocatalysis at low temperatures.
    Georlette D; Blaise V; Collins T; D'Amico S; Gratia E; Hoyoux A; Marx JC; Sonan G; Feller G; Gerday C
    FEMS Microbiol Rev; 2004 Feb; 28(1):25-42. PubMed ID: 14975528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.