BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1374 related articles for article (PubMed ID: 19428475)

  • 1. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity.
    Ellington WR; Bush J
    Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Tanaka K; Bailly X; Zal F; Suzuki T
    Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis.
    Tokuhiro S; Nagataki M; Jarilla BR; Uda K; Suzuki T; Sugiura T; Agatsuma T
    Mol Biochem Parasitol; 2014; 194(1-2):56-63. PubMed ID: 24815317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop movement and catalysis in creatine kinase.
    Wang PF; Flynn AJ; McLeish MJ; Kenyon GL
    IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the diverse array of phosphagen systems present in annelids.
    Suzuki T; Uda K; Adachi M; Sanada H; Tanaka K; Mizuta C; Ishida K; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):60-6. PubMed ID: 18852060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Y84 on domain 1 and Y87 on domain 2 of Paragonimus westermani taurocyamine kinase: Insights on the substrate binding mechanism of a trematode phosphagen kinase.
    Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T
    Exp Parasitol; 2013 Dec; 135(4):695-700. PubMed ID: 24184078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains.
    Uda K; Yamamoto K; Iwasaki N; Iwai M; Fujikura K; Ellington WR; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):176-82. PubMed ID: 18639645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.
    Wu X; Ye S; Guo S; Yan W; Bartlam M; Rao Z
    FASEB J; 2010 Jan; 24(1):242-52. PubMed ID: 19783784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoleucine 69 and valine 325 form a specificity pocket in human muscle creatine kinase.
    Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2004 Nov; 43(43):13766-74. PubMed ID: 15504039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase.
    Uda K; Suzuki T
    Protein J; 2004 Jan; 23(1):53-64. PubMed ID: 15115182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of kinetic constants of creatine kinase isoforms.
    Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T
    Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.