These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19428515)

  • 1. Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces.
    van Gerven M; Jensen O
    J Neurosci Methods; 2009 Apr; 179(1):78-84. PubMed ID: 19428515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covert attention allows for continuous control of brain-computer interfaces.
    Bahramisharif A; van Gerven M; Heskes T; Jensen O
    Eur J Neurosci; 2010 Apr; 31(8):1501-8. PubMed ID: 20525062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selecting features for BCI control based on a covert spatial attention paradigm.
    van Gerven M; Bahramisharif A; Heskes T; Jensen O
    Neural Netw; 2009 Nov; 22(9):1271-7. PubMed ID: 19577900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual spatial attention control in an independent brain-computer interface.
    Kelly SP; Lalor EC; Finucane C; McDarby G; Reilly RB
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1588-96. PubMed ID: 16189972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.
    Horschig JM; Oosterheert W; Oostenveld R; Jensen O
    Brain Topogr; 2015 Nov; 28(6):852-64. PubMed ID: 25388661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous and endogenous orienting of visuospatial attention in P300-guided brain computer interfaces: a pilot study on healthy participants.
    Marchetti M; Piccione F; Silvoni S; Priftis K
    Clin Neurophysiol; 2012 Apr; 123(4):774-9. PubMed ID: 21903462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):172-8. PubMed ID: 16003896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface.
    Sitaram R; Zhang H; Guan C; Thulasidas M; Hoshi Y; Ishikawa A; Shimizu K; Birbaumer N
    Neuroimage; 2007 Feb; 34(4):1416-27. PubMed ID: 17196832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Watching brain TV and playing brain ball exploring novel BCI strategies using real-time analysis of human intracranial data.
    Jerbi K; Freyermuth S; Minotti L; Kahane P; Berthoz A; Lachaux JP
    Int Rev Neurobiol; 2009; 86():159-68. PubMed ID: 19607998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention.
    Rihs TA; Michel CM; Thut G
    Neuroimage; 2009 Jan; 44(1):190-9. PubMed ID: 18793732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological regulation of thinking: brain-computer interface (BCI) research.
    Birbaumer N; Weber C; Neuper C; Buch E; Haapen K; Cohen L
    Prog Brain Res; 2006; 159():369-91. PubMed ID: 17071243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interfaces (BCIs): detection instead of classification.
    Schalk G; Brunner P; Gerhardt LA; Bischof H; Wolpaw JR
    J Neurosci Methods; 2008 Jan; 167(1):51-62. PubMed ID: 17920134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Gender-specific post-stimulus modulation in the alpha band during visual-spatial attention].
    Vaquero-Casares E; Cardoso-Moreno MJ; Vázquez-Marrufo M; González-Rosa JJ; Gómez-González CM
    Rev Neurol; 2004 Jul 16-31; 39(2):109-14. PubMed ID: 15264158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary brain regulation and communication with electrocorticogram signals.
    Hinterberger T; Widman G; Lal TN; Hill J; Tangermann M; Rosenstiel W; Schölkopf B; Elger C; Birbaumer N
    Epilepsy Behav; 2008 Aug; 13(2):300-6. PubMed ID: 18495541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of imaginary movements in ECoG with a hybrid approach based on multi-dimensional Hilbert-SVM solution.
    Demirer RM; Ozerdem MS; Bayrak C
    J Neurosci Methods; 2009 Mar; 178(1):214-8. PubMed ID: 19084556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.