These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19428515)

  • 21. Real-time decoding of the direction of covert visuospatial attention.
    Andersson P; Ramsey NF; Raemaekers M; Viergever MA; Pluim JP
    J Neural Eng; 2012 Aug; 9(4):045004. PubMed ID: 22831959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2008; 48(1):43-51. PubMed ID: 18338534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fuzzy support vector machine for classification of EEG signals using wavelet-based features.
    Xu Q; Zhou H; Wang Y; Huang J
    Med Eng Phys; 2009 Sep; 31(7):858-65. PubMed ID: 19487151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new (semantic) reflexive brain-computer interface: in search for a suitable classifier.
    Furdea A; Ruf CA; Halder S; De Massari D; Bogdan M; Rosenstiel W; Matuz T; Birbaumer N
    J Neurosci Methods; 2012 Jan; 203(1):233-40. PubMed ID: 21963400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain-computer interfacing using modulations of alpha activity induced by covert shifts of attention.
    Treder MS; Bahramisharif A; Schmidt NM; van Gerven MA; Blankertz B
    J Neuroeng Rehabil; 2011 May; 8():24. PubMed ID: 21672270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theta oscillations and human navigation: a magnetoencephalography study.
    de Araújo DB; Baffa O; Wakai RT
    J Cogn Neurosci; 2002 Jan; 14(1):70-8. PubMed ID: 11798388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clustering linear discriminant analysis for MEG-based brain computer interfaces.
    Zhang J; Sudre G; Li X; Wang W; Weber DJ; Bagic A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):221-31. PubMed ID: 21342856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DASHER--an efficient writing system for brain-computer interfaces?
    Wills SA; MacKay DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):244-6. PubMed ID: 16792304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Training protocol evaluation of a brain-computer interface: mental tasks proposal].
    Ron-Angevin R; Díaz-Estrella A
    Rev Neurol; 2008 Aug 16-31; 47(4):197-203. PubMed ID: 18671209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-dependent approach for single trial classification of covert visuospatial attention.
    Tonin L; Leeb R; Del R Millán J
    J Neural Eng; 2012 Aug; 9(4):045011. PubMed ID: 22832204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The brain-computer interface cycle.
    van Gerven M; Farquhar J; Schaefer R; Vlek R; Geuze J; Nijholt A; Ramsey N; Haselager P; Vuurpijl L; Gielen S; Desain P
    J Neural Eng; 2009 Aug; 6(4):041001. PubMed ID: 19622847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing.
    Roijendijk L; Farquhar J; van Gerven M; Jensen O; Gielen S
    PLoS One; 2013; 8(12):e80489. PubMed ID: 24312477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-computer interfaces and neurorehabilitation.
    Carabalona R; Castiglioni P; Gramatica F
    Stud Health Technol Inform; 2009; 145():160-76. PubMed ID: 19592793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-trial discrimination of truthful from deceptive responses during a game of financial risk using alpha-band MEG signals.
    Seth AK; Iversen JR; Edelman GM
    Neuroimage; 2006 Aug; 32(1):465-76. PubMed ID: 16678444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological indices of spatial attention during global/local processing in good and poor phonological decoders.
    Matthews AJ; Martin FH
    Brain Lang; 2009 Dec; 111(3):152-60. PubMed ID: 19828188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Matching brain-machine interface performance to space applications.
    Citi L; Tonet O; Marinelli M
    Int Rev Neurobiol; 2009; 86():199-212. PubMed ID: 19608001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients.
    Kübler A; Furdea A; Halder S; Hammer EM; Nijboer F; Kotchoubey B
    Ann N Y Acad Sci; 2009 Mar; 1157():90-100. PubMed ID: 19351359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.
    Andersson P; Pluim JP; Viergever MA; Ramsey NF
    Brain Topogr; 2013 Jan; 26(1):177-85. PubMed ID: 22965825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the use of brain-computer interfaces outside scientific laboratories toward an application in domotic environments.
    Babiloni F; Cincotti F; Marciani M; Salinari S; Astolfi L; Aloise F; De Vico Fallani F; Mattia D
    Int Rev Neurobiol; 2009; 86():133-46. PubMed ID: 19607996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.