These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19428527)

  • 1. Acquiring local field potential information from amperometric neurochemical recordings.
    Zhang H; Lin SC; Nicolelis MA
    J Neurosci Methods; 2009 May; 179(2):191-200. PubMed ID: 19428527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous measurement of cholinergic tone and neuronal network dynamics in vivo in the rat brain using a novel choline oxidase based electrochemical biosensor.
    Santos RM; Laranjinha J; Barbosa RM; Sirota A
    Biosens Bioelectron; 2015 Jul; 69():83-94. PubMed ID: 25706061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings.
    Johnson MD; Franklin RK; Gibson MD; Brown RB; Kipke DR
    J Neurosci Methods; 2008 Sep; 174(1):62-70. PubMed ID: 18692090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of field excitatory post-synaptic potentials in the dentate gyrus from amperometric biosensor signals.
    Viggiano A; Marinesco S; Pain F; Meiller A; Gurden H
    J Neurosci Methods; 2012 Apr; 206(1):1-6. PubMed ID: 22326619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre 'dident' microelectrodes.
    Pennington JM; Millar J; L Jones CP; Owesson CA; McLaughlin DP; Stamford JA
    J Neurosci Methods; 2004 Dec; 140(1-2):5-13. PubMed ID: 15589328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus.
    Arabadzisz D; Antal K; Parpan F; Emri Z; Fritschy JM
    Exp Neurol; 2005 Jul; 194(1):76-90. PubMed ID: 15899245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors.
    Ma X; Zhang Y; Wang L; Li N; Barkai E; Zhang X; Lin L; Xu J
    J Neurosci; 2020 Apr; 40(18):3591-3603. PubMed ID: 32265261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.
    Weiss T; Veh RW; Heinemann U
    Eur J Neurosci; 2003 Nov; 18(9):2573-80. PubMed ID: 14622158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular probes for neurochemical recording from multiple brain sites.
    Schwerdt HN; Kim MJ; Amemori S; Homma D; Yoshida T; Shimazu H; Yerramreddy H; Karasan E; Langer R; Graybiel AM; Cima MJ
    Lab Chip; 2017 Mar; 17(6):1104-1115. PubMed ID: 28233001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo voltammetry: from wire to wireless measurements.
    Crespi F; Dalessandro D; Annovazzi-Lodi V; Heidbreder C; Norgia M
    J Neurosci Methods; 2004 Dec; 140(1-2):153-61. PubMed ID: 15589345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell discharge correlates of posterior hypothalamic theta rhythm recorded in anesthetized rats and brain slices.
    Bocian R; Kłos-Wojtczak P; Caban B; Kowalczyk T; Kaźmierska P; Konopacki J
    Hippocampus; 2016 Oct; 26(10):1354-69. PubMed ID: 27326660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurochemistry of Anesthetic States.
    Lydic R; Baghdoyan HA; May AL
    Methods Enzymol; 2018; 603():237-255. PubMed ID: 29673529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.
    Bledsoe JM; Kimble CJ; Covey DP; Blaha CD; Agnesi F; Mohseni P; Whitlock S; Johnson DM; Horne A; Bennet KE; Lee KH; Garris PA
    J Neurosurg; 2009 Oct; 111(4):712-23. PubMed ID: 19425890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm.
    Yoder RM; Pang KC
    Hippocampus; 2005; 15(3):381-92. PubMed ID: 15630696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Window effect of temperature on carbachol-induced theta-like activity recorded in hippocampal formation in vitro.
    Kowalczyk T; Golebiewski H; Eckersdorf B; Konopacki J
    Brain Res; 2001 May; 901(1-2):184-94. PubMed ID: 11368966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of IPSP theta rhythm by muscarinic receptors and endocannabinoids in hippocampus.
    Reich CG; Karson MA; Karnup SV; Jones LM; Alger BE
    J Neurophysiol; 2005 Dec; 94(6):4290-9. PubMed ID: 16093334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux.
    McLamore ES; Mohanty S; Shi J; Claussen J; Jedlicka SS; Rickus JL; Porterfield DM
    J Neurosci Methods; 2010 May; 189(1):14-22. PubMed ID: 20298719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing neurochemical monitoring.
    Garris PA
    Nat Methods; 2010 Feb; 7(2):106-8. PubMed ID: 20111035
    [No Abstract]   [Full Text] [Related]  

  • 19. Wireless voltammetry recording in unanesthetised behaving rats.
    Kagohashi M; Nakazato T; Yoshimi K; Moizumi S; Hattori N; Kitazawa S
    Neurosci Res; 2008 Jan; 60(1):120-7. PubMed ID: 17983679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.
    Whitmore NW; Lin SC
    Neuroimage; 2016 May; 132():79-92. PubMed ID: 26899209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.