BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19428913)

  • 41. COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis.
    Bilotta C; Perrone G; Adelfio V; Spatola GF; Uzzo ML; Argo A; Zerbo S
    Front Immunol; 2021; 12():729251. PubMed ID: 34912330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of immune response to inorganic nanoparticles and their degradation products.
    Mohammapdour R; Ghandehari H
    Adv Drug Deliv Rev; 2022 Jan; 180():114022. PubMed ID: 34740764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation.
    Nandi D; Shivrayan M; Gao J; Krishna J; Das R; Liu B; Thayumanavan S; Kulkarni A
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45300-45314. PubMed ID: 34543013
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scientific premise for the involvement of neutrophil extracellular traps (NETs) in vaccine-induced thrombotic thrombocytopenia (VITT).
    Kashir J; Ambia AR; Shafqat A; Sajid MR; AlKattan K; Yaqinuddin A
    J Leukoc Biol; 2022 Mar; 111(3):725-734. PubMed ID: 34467562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of SARS-CoV-2 Mutations on the Efficacy of Antibody Therapy and Response to Vaccines.
    Yaqinuddin A; Shafqat A; Kashir J; Alkattan K
    Vaccines (Basel); 2021 Aug; 9(8):. PubMed ID: 34452039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sesquiterpene-Loaded Co-Polymer Hybrid Nanoparticle Effects on Human Mast Cell Surface Receptor Expression, Granule Contents, and Degranulation.
    Arizmendi N; Qian H; Li Y; Kulka M
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel approaches for vaccine development.
    Gebre MS; Brito LA; Tostanoski LH; Edwards DK; Carfi A; Barouch DH
    Cell; 2021 Mar; 184(6):1589-1603. PubMed ID: 33740454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): diagnosis, treatment, therapy and future perspectives.
    Rashidzadeh H; Danafar H; Rahimi H; Mozafari F; Salehiabar M; Rahmati MA; Rahamooz-Haghighi S; Mousazadeh N; Mohammadi A; Ertas YN; Ramazani A; Huseynova I; Khalilov R; Davaran S; Webster TJ; Kavetskyy T; Eftekhari A; Nosrati H; Mirsaeidi M
    Nanomedicine (Lond); 2021 Mar; 16(6):497-516. PubMed ID: 33683164
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pro-Inflammatory Cytokines at Ultra-Low Dose Exert Anti-Inflammatory Effect In Vitro: A Possible Mode of Action Involving Sub-Micron Particles?
    Floris I; Rose T; Rojas JAC; Appel K; Roesch C; Lejeune B
    Dose Response; 2020; 18(4):1559325820961723. PubMed ID: 33633511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-Influenza Strategies Based on Nanoparticle Applications.
    Wieczorek K; Szutkowska B; Kierzek E
    Pathogens; 2020 Dec; 9(12):. PubMed ID: 33287259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of CafA Targeted BAR-Encapsulated Nanoparticles against Oral Biofilms.
    Desai H; Mahmoud MY; Tan J; Minooei F; Demuth DR; Steinbach-Rankins JM
    Pharmaceutics; 2020 Sep; 12(9):. PubMed ID: 32882864
    [No Abstract]   [Full Text] [Related]  

  • 52. Inflammasomes: a preclinical assessment of targeting in atherosclerosis.
    Stitham J; Rodriguez-Velez A; Zhang X; Jeong SJ; Razani B
    Expert Opin Ther Targets; 2020 Sep; 24(9):825-844. PubMed ID: 32757967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art.
    Shetab Boushehri MA; Dietrich D; Lamprecht A
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32503171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing inorganic nanomaterials for vaccines and immunotherapies.
    Hess KL; Medintz IL; Jewell CM
    Nano Today; 2019 Aug; 27():73-98. PubMed ID: 32292488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanomaterial Exposure Induced Neutrophil Extracellular Traps: A New Target in Inflammation and Innate Immunity.
    Yang H; Marion TN; Liu Y; Zhang L; Cao X; Hu H; Zhao Y; Herrmann M
    J Immunol Res; 2019; 2019():3560180. PubMed ID: 30944832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures.
    Sun Y; Ma J; Li D; Li P; Zhou X; Li Y; He Z; Qin L; Liang L; Luo X
    J Neuroinflammation; 2019 Mar; 16(1):66. PubMed ID: 30922332
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis.
    Palmer BC; Jatana S; Phelan-Dickinson SJ; DeLouise LA
    Sci Rep; 2019 Mar; 9(1):5085. PubMed ID: 30911099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies.
    Calzoni E; Cesaretti A; Polchi A; Di Michele A; Tancini B; Emiliani C
    J Funct Biomater; 2019 Jan; 10(1):. PubMed ID: 30626094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Co-delivery of a CD4 T cell helper epitope via covalent liposome attachment with a surface-arrayed B cell target antigen fosters higher affinity antibody responses.
    Elbahnasawy MA; Donius LR; Reinherz EL; Kim M
    Vaccine; 2018 Oct; 36(41):6191-6201. PubMed ID: 30197285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unintended effects of drug carriers: Big issues of small particles.
    Parhiz H; Khoshnejad M; Myerson JW; Hood E; Patel PN; Brenner JS; Muzykantov VR
    Adv Drug Deliv Rev; 2018 May; 130():90-112. PubMed ID: 30149885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.