BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 19429249)

  • 21. Cytotoxicity of pharmaceuticals found in aquatic systems: comparison of PLHC-1 and RTG-2 fish cell lines.
    Caminada D; Escher C; Fent K
    Aquat Toxicol; 2006 Aug; 79(2):114-23. PubMed ID: 16828891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
    Nendza M; Wenzel A
    Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction.
    Flaherty CM; Dodson SI
    Chemosphere; 2005 Oct; 61(2):200-7. PubMed ID: 16168743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches.
    Kienzler A; Barron MG; Belanger SE; Beasley A; Embry MR
    Environ Sci Technol; 2017 Sep; 51(17):10203-10211. PubMed ID: 28759717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of acute inhalation toxicity for chemicals with limited toxicity information.
    Grant RL; Kadlubar BJ; Erraguntla NK; Honeycutt M
    Regul Toxicol Pharmacol; 2007 Apr; 47(3):261-73. PubMed ID: 17275156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly active human pharmaceuticals in aquatic systems: A concept for their identification based on their mode of action.
    Christen V; Hickmann S; Rechenberg B; Fent K
    Aquat Toxicol; 2010 Feb; 96(3):167-81. PubMed ID: 20053463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges.
    Christensen AM; Markussen B; Baun A; Halling-Sørensen B
    Chemosphere; 2009 Oct; 77(3):351-8. PubMed ID: 19682723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicted critical environmental concentrations for 500 pharmaceuticals.
    Fick J; Lindberg RH; Tysklind M; Larsson DG
    Regul Toxicol Pharmacol; 2010 Dec; 58(3):516-23. PubMed ID: 20816909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors.
    Carriger JF; Martin TM; Barron MG
    Aquat Toxicol; 2016 Nov; 180():11-24. PubMed ID: 27640153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties.
    Fisk PR; Wildey RJ; Girling AE; Sanderson H; Belanger SE; Veenstra G; Nielsen A; Kasai Y; Willing A; Dyer SD; Stanton K
    Ecotoxicol Environ Saf; 2009 May; 72(4):980-95. PubMed ID: 19038450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The application of structure-activity relationships (SARs) in the aquatic toxicity evaluation of discrete organic chemicals.
    Clements RG; Nabholz JV; Zeeman MG; Auer CM
    SAR QSAR Environ Res; 1995; 3(3):203-15. PubMed ID: 8564855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid.
    Cleuvers M
    Ecotoxicol Environ Saf; 2004 Nov; 59(3):309-15. PubMed ID: 15388270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prioritising pharmaceuticals for environmental risk assessment: Towards adequate and feasible first-tier selection.
    Roos V; Gunnarsson L; Fick J; Larsson DG; Rudén C
    Sci Total Environ; 2012 Apr; 421-422():102-10. PubMed ID: 22361586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicity of individual pharmaceuticals and their mixtures to Aliivibrio fischeri: Experimental results for single compounds and considerations of their mechanisms of action and potential acute effects on aquatic organisms.
    Di Nica V; Villa S; Finizio A
    Environ Toxicol Chem; 2017 Mar; 36(3):807-814. PubMed ID: 27467075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discriminating toxicant classes by mode of action: 3. Substructure indicators.
    Nendza M; Müller M
    SAR QSAR Environ Res; 2007; 18(1-2):155-68. PubMed ID: 17365966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in metals classification under the United Nations globally harmonized system of classification and labeling.
    Skeaff J; Adams WJ; Rodriguez P; Brouwers T; Waeterschoot H
    Integr Environ Assess Manag; 2011 Oct; 7(4):559-76. PubMed ID: 21425236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association between contaminant tissue residues and effects in aquatic organisms.
    Barron MG; Hansen JA; Lipton J
    Rev Environ Contam Toxicol; 2002; 173():1-37. PubMed ID: 11776748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute toxicity value extrapolation with fish and aquatic invertebrates.
    Buckler DR; Mayer FL; Ellersieck MR; Asfaw A
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):546-58. PubMed ID: 16205993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecotoxicity of naproxen and its phototransformation products.
    Isidori M; Lavorgna M; Nardelli A; Parrella A; Previtera L; Rubino M
    Sci Total Environ; 2005 Sep; 348(1-3):93-101. PubMed ID: 16162316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.