These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 19429543)

  • 1. The response of endothelial cells to polymer surface composed of nanometric micelles.
    Hung HS; Hsu SH
    N Biotechnol; 2009 Apr; 25(4):235-43. PubMed ID: 19429543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways.
    Hung HS; Wu CC; Chien S; Hsu SH
    Biomaterials; 2009 Mar; 30(8):1502-11. PubMed ID: 19118895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediation of the migration of endothelial cells and fibroblasts on polyurethane nanocomposites by the activation of integrin-focal adhesion kinase signaling.
    Hung HS; Chu MY; Lin CH; Wu CC; Hsu SH
    J Biomed Mater Res A; 2012 Jan; 100(1):26-37. PubMed ID: 21972215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites.
    Hung HS; Yang YC; Lin YC; Lin SZ; Kao WC; Hsieh HH; Chu MY; Fu RH; Hsu SH
    Biomaterials; 2014 Aug; 35(25):6810-21. PubMed ID: 24836305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites.
    Hsu SH; Tseng HJ; Lin YC
    Biomaterials; 2010 Sep; 31(26):6796-808. PubMed ID: 20542329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticles induce surface morphological transformation in polyurethane and affect the cellular response.
    Hsu SH; Tang CM; Tseng HJ
    Biomacromolecules; 2008 Jan; 9(1):241-8. PubMed ID: 18163574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites.
    Hsu SH; Tang CM; Tseng HJ
    Acta Biomater; 2008 Nov; 4(6):1797-808. PubMed ID: 18657493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.
    Tsang M; Chun YW; Im YM; Khang D; Webster TJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of poly(ether)urethane-gold nanocomposites.
    Hsu SH; Tang CM; Tseng HJ
    J Biomed Mater Res A; 2006 Dec; 79(4):759-70. PubMed ID: 16871514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal nitric oxide release attenuates cell migration of HeLa and endothelial cells.
    Bulotta S; Ierardi MV; Maiuolo J; Cattaneo MG; Cerullo A; Vicentini LM; Borgese N
    Biochem Biophys Res Commun; 2009 Sep; 386(4):744-9. PubMed ID: 19559671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells.
    Sakamoto N; Ishibashi T; Sugimoto K; Sawamura T; Sakamoto T; Inoue N; Saitoh S; Kamioka M; Uekita H; Ohkawara H; Suzuki K; Teramoto T; Maruyama Y; Takeishi Y
    J Cell Physiol; 2009 Sep; 220(3):706-15. PubMed ID: 19452449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties.
    Huang YH; Chen MH; Lee BH; Hsieh KH; Tu YK; Lin JJ; Chang CH
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20324-33. PubMed ID: 25307230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets.
    Tseng HJ; Lin JJ; Ho TT; Tseng SM; Hsu SH
    J Biomed Mater Res A; 2011 Nov; 99(2):192-202. PubMed ID: 21976444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane.
    Wang MC; Lin JJ; Tseng HJ; Hsu SH
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):338-50. PubMed ID: 22128903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial cell attachment to the gamma irradiated small diameter polyurethane vascular grafts.
    Hsu SH; Chuang SC; Chen CH; Chen DC
    Biomed Mater Eng; 2006; 16(6):397-404. PubMed ID: 17119278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model.
    Chou CW; Hsu SH; Wang PH
    J Biomed Mater Res A; 2008 Mar; 84(3):785-94. PubMed ID: 17635027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells.
    Kalishwaralal K; Banumathi E; Ram Kumar Pandian S; Deepak V; Muniyandi J; Eom SH; Gurunathan S
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):51-7. PubMed ID: 19481908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite.
    Prabhakar PK; Raj S; Anuradha PR; Sawant SN; Doble M
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):146-53. PubMed ID: 21501952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations.
    Jung IK; Bae JW; Choi WS; Choi JH; Park KD
    J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-producing polyurethanes.
    Jun HW; Taite LJ; West JL
    Biomacromolecules; 2005; 6(2):838-44. PubMed ID: 15762649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.