BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 19429544)

  • 21. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    Revilla-i-Domingo R; Oliveri P; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
    Peter IS; Davidson EH
    Dev Biol; 2010 Apr; 340(2):188-99. PubMed ID: 19895806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
    Li X; Bhattacharya C; Dayal S; Maity S; Klein WH
    Differentiation; 2002 May; 70(2-3):109-19. PubMed ID: 12076338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
    Agca C; Klein WH; Venuti JM
    Dev Dyn; 2009 Jul; 238(7):1777-87. PubMed ID: 19517573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.
    Li E; Cui M; Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E906-13. PubMed ID: 24556994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Burke RD
    Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gene regulatory control of sea urchin gastrulation.
    Ettensohn CA
    Mech Dev; 2020 Jun; 162():103599. PubMed ID: 32119908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A gene regulatory network subcircuit drives a dynamic pattern of gene expression.
    Smith J; Theodoris C; Davidson EH
    Science; 2007 Nov; 318(5851):794-7. PubMed ID: 17975065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional studies of regulatory genes in the sea urchin embryo.
    Cavalieri V; Di Bernardo M; Spinelli G
    Methods Mol Biol; 2009; 518():175-88. PubMed ID: 19085138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel.
    Katow H; Yaguchi S; Kyozuka K
    J Exp Biol; 2007 Feb; 210(Pt 3):403-12. PubMed ID: 17234609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm.
    Cameron RA; Britten RJ; Davidson EH
    Dev Biol; 1993 Dec; 160(2):369-76. PubMed ID: 8253270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.