These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 19429603)

  • 1. The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots.
    Afzal AJ; Natarajan A; Saini N; Iqbal MJ; Geisler M; El Shemy HA; Mungur R; Willmitzer L; Lightfoot DA
    Plant Physiol; 2009 Nov; 151(3):1264-80. PubMed ID: 19429603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses.
    Srour A; Afzal AJ; Blahut-Beatty L; Hemmati N; Simmonds DH; Li W; Liu M; Town CD; Sharma H; Arelli P; Lightfoot DA
    BMC Genomics; 2012 Aug; 13():368. PubMed ID: 22857610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance.
    Melito S; Heuberger AL; Cook D; Diers BW; MacGuidwin AE; Bent AF
    BMC Plant Biol; 2010 Jun; 10():104. PubMed ID: 20529370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segregation at the SCN resistance locus rhg1 in soybean is distorted by an association between the resistance allele and reduced field emergence.
    Kopisch-Obuch FJ; Diers BW
    Theor Appl Genet; 2006 Jan; 112(2):199-207. PubMed ID: 16292671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse.
    Brucker E; Carlson S; Wright E; Niblack T; Diers B
    Theor Appl Genet; 2005 Jun; 111(1):44-9. PubMed ID: 15883792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme.
    Iqbal MJ; Majeed M; Humayun M; Lightfoot DA; Afzal AJ
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1657-1674. PubMed ID: 27491306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.
    Matthews BF; Beard H; Brewer E; Kabir S; MacDonald MH; Youssef RM
    BMC Plant Biol; 2014 Apr; 14():96. PubMed ID: 24739302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soybean transporter AAT Rhg1 abundance increases along the nematode migration path and impacts vesiculation and ROS.
    Han S; Smith JM; Du Y; Bent AF
    Plant Physiol; 2023 May; 192(1):133-153. PubMed ID: 36805759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode.
    Afzal AJ; Srour A; Saini N; Hemmati N; El Shemy HA; Lightfoot DA
    Theor Appl Genet; 2012 Apr; 124(6):1027-39. PubMed ID: 22200919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection.
    Li S; Chen Y; Zhu X; Wang Y; Jung KH; Chen L; Xuan Y; Duan Y
    J Plant Physiol; 2018 Jan; 220():96-104. PubMed ID: 29169106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode.
    Ruben E; Jamai A; Afzal J; Njiti VN; Triwitayakorn K; Iqbal MJ; Yaegashi S; Bashir R; Kazi S; Arelli P; Town CD; Ishihara H; Meksem K; Lightfoot DA
    Mol Genet Genomics; 2006 Dec; 276(6):503-16. PubMed ID: 17024428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C.
    Usovsky M; Ye H; Vuong TD; Patil GB; Wan J; Zhou L; Nguyen HT
    Theor Appl Genet; 2021 Feb; 134(2):621-631. PubMed ID: 33185711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping.
    Han Y; Zhao X; Cao G; Wang Y; Li Y; Liu D; Teng W; Zhang Z; Li D; Qiu L; Zheng H; Li W
    BMC Genomics; 2015 Aug; 16(1):598. PubMed ID: 26268218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance Gene Pyramiding and Rotation to Combat Widespread Soybean Cyst Nematode Virulence.
    Meinhardt C; Howland A; Ellersieck M; Scaboo A; Diers B; Mitchum MG
    Plant Dis; 2021 Oct; 105(10):3238-3243. PubMed ID: 33449807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. t-SNAREs bind the Rhg1 α-SNAP and mediate soybean cyst nematode resistance.
    Dong J; Zielinski RE; Hudson ME
    Plant J; 2020 Oct; 104(2):318-331. PubMed ID: 32645235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar 'L-10'.
    Chang W; Dong L; Wang Z; Hu H; Han Y; Teng W; Zhang H; Guo M; Li W
    BMC Genomics; 2011 May; 12():233. PubMed ID: 21569389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soybean Cyst Nematode Resistance Quantitative Trait Locus
    Butler KJ; Fliege C; Zapotocny R; Diers B; Hudson M; Bent AF
    Mol Plant Microbe Interact; 2021 Dec; 34(12):1433-1445. PubMed ID: 34343024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean.
    Yu N; Lee TG; Rosa DP; Hudson M; Diers BW
    Theor Appl Genet; 2016 Dec; 129(12):2403-2412. PubMed ID: 27581541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations.
    Basnet P; Meinhardt CG; Usovsky M; Gillman JD; Joshi T; Song Q; Diers B; Mitchum MG; Scaboo AM
    Theor Appl Genet; 2022 Jun; 135(6):2025-2039. PubMed ID: 35381870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WI12
    Dong J; Hudson ME
    Plant Biotechnol J; 2022 Feb; 20(2):283-296. PubMed ID: 34532941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.