These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 19429815)
1. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815 [TBL] [Abstract][Full Text] [Related]
2. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846 [TBL] [Abstract][Full Text] [Related]
3. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart. Gupte RS; Vijay V; Marks B; Levine RJ; Sabbah HN; Wolin MS; Recchia FA; Gupte SA J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065 [TBL] [Abstract][Full Text] [Related]
4. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489 [TBL] [Abstract][Full Text] [Related]
5. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart. Gupte SA; Levine RJ; Gupte RS; Young ME; Lionetti V; Labinskyy V; Floyd BC; Ojaimi C; Bellomo M; Wolin MS; Recchia FA J Mol Cell Cardiol; 2006 Aug; 41(2):340-9. PubMed ID: 16828794 [TBL] [Abstract][Full Text] [Related]
6. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases. Gupte SA Curr Opin Investig Drugs; 2008 Sep; 9(9):993-1000. PubMed ID: 18729006 [TBL] [Abstract][Full Text] [Related]
7. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. Spencer NY; Yan Z; Boudreau RL; Zhang Y; Luo M; Li Q; Tian X; Shah AM; Davisson RL; Davidson B; Banfi B; Engelhardt JF J Biol Chem; 2011 Mar; 286(11):8977-87. PubMed ID: 21212270 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats. Vázquez-Medina JP; Popovich I; Thorwald MA; Viscarra JA; Rodriguez R; Sonanez-Organis JG; Lam L; Peti-Peterdi J; Nakano D; Nishiyama A; Ortiz RM Am J Physiol Heart Circ Physiol; 2013 Aug; 305(4):H599-607. PubMed ID: 23771688 [TBL] [Abstract][Full Text] [Related]
9. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Chinen I; Shimabukuro M; Yamakawa K; Higa N; Matsuzaki T; Noguchi K; Ueda S; Sakanashi M; Takasu N Endocrinology; 2007 Jan; 148(1):160-5. PubMed ID: 17023526 [TBL] [Abstract][Full Text] [Related]
10. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Muñoz M; López-Oliva ME; Rodríguez C; Martínez MP; Sáenz-Medina J; Sánchez A; Climent B; Benedito S; García-Sacristán A; Rivera L; Hernández M; Prieto D Redox Biol; 2020 Jan; 28():101330. PubMed ID: 31563085 [TBL] [Abstract][Full Text] [Related]
12. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway. Parsanathan R; Jain SK Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050491 [TBL] [Abstract][Full Text] [Related]
13. Spironolactone improves nephropathy by enhancing glucose-6-phosphate dehydrogenase activity and reducing oxidative stress in diabetic hypertensive rat. Pessôa BS; Peixoto EB; Papadimitriou A; Lopes de Faria JM; Lopes de Faria JB J Renin Angiotensin Aldosterone Syst; 2012 Mar; 13(1):56-66. PubMed ID: 21987533 [TBL] [Abstract][Full Text] [Related]
14. Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM. Gupte S; Labinskyy N; Gupte R; Csiszar A; Ungvari Z; Edwards JG PLoS One; 2010 Jul; 5(7):e11800. PubMed ID: 20668682 [TBL] [Abstract][Full Text] [Related]
16. Hyperthermia-induced Hsp90·eNOS preserves mitochondrial respiration in hyperglycemic endothelial cells by down-regulating Glut-1 and up-regulating G6PD activity. Presley T; Vedam K; Druhan LJ; Ilangovan G J Biol Chem; 2010 Dec; 285(49):38194-203. PubMed ID: 20861020 [TBL] [Abstract][Full Text] [Related]
17. Nitric oxide and hydrogen peroxide increase glucose-6-phosphate dehydrogenase activities and expression upon drought stress in soybean roots. Wang X; Ruan M; Wan Q; He W; Yang L; Liu X; He L; Yan L; Bi Y Plant Cell Rep; 2020 Jan; 39(1):63-73. PubMed ID: 31535176 [TBL] [Abstract][Full Text] [Related]
18. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866 [TBL] [Abstract][Full Text] [Related]
19. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function. Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515 [TBL] [Abstract][Full Text] [Related]
20. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]