BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 19429815)

  • 1. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA
    Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart.
    Gupte RS; Vijay V; Marks B; Levine RJ; Sabbah HN; Wolin MS; Recchia FA; Gupte SA
    J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
    Gupte SA; Levine RJ; Gupte RS; Young ME; Lionetti V; Labinskyy V; Floyd BC; Ojaimi C; Bellomo M; Wolin MS; Recchia FA
    J Mol Cell Cardiol; 2006 Aug; 41(2):340-9. PubMed ID: 16828794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases.
    Gupte SA
    Curr Opin Investig Drugs; 2008 Sep; 9(9):993-1000. PubMed ID: 18729006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4.
    Spencer NY; Yan Z; Boudreau RL; Zhang Y; Luo M; Li Q; Tian X; Shah AM; Davisson RL; Davidson B; Banfi B; Engelhardt JF
    J Biol Chem; 2011 Mar; 286(11):8977-87. PubMed ID: 21212270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats.
    Vázquez-Medina JP; Popovich I; Thorwald MA; Viscarra JA; Rodriguez R; Sonanez-Organis JG; Lam L; Peti-Peterdi J; Nakano D; Nishiyama A; Ortiz RM
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(4):H599-607. PubMed ID: 23771688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats.
    Chinen I; Shimabukuro M; Yamakawa K; Higa N; Matsuzaki T; Noguchi K; Ueda S; Sakanashi M; Takasu N
    Endocrinology; 2007 Jan; 148(1):160-5. PubMed ID: 17023526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity.
    Muñoz M; López-Oliva ME; Rodríguez C; Martínez MP; Sáenz-Medina J; Sánchez A; Climent B; Benedito S; García-Sacristán A; Rivera L; Hernández M; Prieto D
    Redox Biol; 2020 Jan; 28():101330. PubMed ID: 31563085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway.
    Parsanathan R; Jain SK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spironolactone improves nephropathy by enhancing glucose-6-phosphate dehydrogenase activity and reducing oxidative stress in diabetic hypertensive rat.
    Pessôa BS; Peixoto EB; Papadimitriou A; Lopes de Faria JM; Lopes de Faria JB
    J Renin Angiotensin Aldosterone Syst; 2012 Mar; 13(1):56-66. PubMed ID: 21987533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM.
    Gupte S; Labinskyy N; Gupte R; Csiszar A; Ungvari Z; Edwards JG
    PLoS One; 2010 Jul; 5(7):e11800. PubMed ID: 20668682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac β-Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses.
    Haley JM; Thackeray JT; Thorn SL; DaSilva JN
    PLoS One; 2015; 10(5):e0127581. PubMed ID: 25996498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermia-induced Hsp90·eNOS preserves mitochondrial respiration in hyperglycemic endothelial cells by down-regulating Glut-1 and up-regulating G6PD activity.
    Presley T; Vedam K; Druhan LJ; Ilangovan G
    J Biol Chem; 2010 Dec; 285(49):38194-203. PubMed ID: 20861020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide and hydrogen peroxide increase glucose-6-phosphate dehydrogenase activities and expression upon drought stress in soybean roots.
    Wang X; Ruan M; Wan Q; He W; Yang L; Liu X; He L; Yan L; Bi Y
    Plant Cell Rep; 2020 Jan; 39(1):63-73. PubMed ID: 31535176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C.
    Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T
    Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.