These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19429832)

  • 1. Validation of a one-dimensional model of the systemic arterial tree.
    Reymond P; Merenda F; Perren F; Rüfenacht D; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H208-22. PubMed ID: 19429832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a patient-specific one-dimensional model of the systemic arterial tree.
    Reymond P; Bohraus Y; Perren F; Lazeyras F; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1173-82. PubMed ID: 21622820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation.
    Canić S; Hartley CJ; Rosenstrauch D; Tambaca J; Guidoboni G; Mikelić A
    Ann Biomed Eng; 2006 Apr; 34(4):575-92. PubMed ID: 16550449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree.
    Huo Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2623-33. PubMed ID: 17208998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 1D model of the arterial circulation in mice.
    Aslanidou L; Trachet B; Reymond P; Fraga-Silva RA; Segers P; Stergiopulos N
    ALTEX; 2016; 33(1):13-28. PubMed ID: 26555250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy.
    Nichols WW; Edwards DG
    J Cardiovasc Pharmacol Ther; 2001 Jan; 6(1):5-21. PubMed ID: 11452332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive evaluation of left ventricular elastance according to pressure-volume curves modeling in arterial hypertension.
    Bonnet B; Jourdan F; du Cailar G; Fesler P
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H237-H243. PubMed ID: 28476921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.
    Alastruey J; Khir AW; Matthys KS; Segers P; Sherwin SJ; Verdonck PR; Parker KH; Peiró J
    J Biomech; 2011 Aug; 44(12):2250-8. PubMed ID: 21724188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive method for determination of arterial compliance using Doppler echocardiography and subclavian pulse tracings. Validation and clinical application of a physiological model of the circulation.
    Marcus RH; Korcarz C; McCray G; Neumann A; Murphy M; Borow K; Weinert L; Bednarz J; Gretler DD; Spencer KT
    Circulation; 1994 Jun; 89(6):2688-99. PubMed ID: 8205683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear separation of forward and backward running waves in elastic conduits.
    Stergiopulos N; Tardy Y; Meister JJ
    J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS; Arts T; Hoeks AP
    J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of closed-form expression for the cerebral circulation models.
    Helal MA
    Comput Biol Med; 1994 Mar; 24(2):103-18. PubMed ID: 8026172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models.
    Reymond P; Perren F; Lazeyras F; Stergiopulos N
    J Biomech; 2012 Oct; 45(15):2499-505. PubMed ID: 22884968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CardioFAN: open source platform for noninvasive assessment of pulse transit time and pulsatile flow in hyperelastic vascular networks.
    Seyed Vahedein Y; Liberson AS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1529-1548. PubMed ID: 31076923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.