These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 19429889)
21. [Advances in the physiopathology of epileptogenesis: molecular aspects]. Armijo JA; Valdizán EM; De Las Cuevas I; Cuadrado A Rev Neurol; 2002 Mar 1-15; 34(5):409-29. PubMed ID: 12040510 [TBL] [Abstract][Full Text] [Related]
22. A breach in the scaffold: the possible role of cytoskeleton dysfunction in the pathogenesis of major depression. Wong GT; Chang RC; Law AC Ageing Res Rev; 2013 Jan; 12(1):67-75. PubMed ID: 22995339 [TBL] [Abstract][Full Text] [Related]
23. Genetic dissection of the signals that induce synaptic reorganization. Schauwecker PE; Ramirez JJ; Steward O Exp Neurol; 2000 Jan; 161(1):139-52. PubMed ID: 10683280 [TBL] [Abstract][Full Text] [Related]
24. Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system. Swann JW; Hablitz JJ Ment Retard Dev Disabil Res Rev; 2000; 6(4):258-67. PubMed ID: 11107191 [TBL] [Abstract][Full Text] [Related]
25. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. Benítez-King G J Pineal Res; 2006 Jan; 40(1):1-9. PubMed ID: 16313492 [TBL] [Abstract][Full Text] [Related]
26. Alterations of phosphatidylinositol 3-kinase pathway components in epilepsy-associated glioneuronal lesions. Schick V; Majores M; Koch A; Elger CE; Schramm J; Urbach H; Becker AJ Epilepsia; 2007; 48 Suppl 5():65-73. PubMed ID: 17910583 [TBL] [Abstract][Full Text] [Related]
27. Hypothyroidism reduces the rate of slow component A (SCa) axonal transport and the amount of transported tubulin in the hyt/hyt mouse optic nerve. Stein SA; Kirkpatrick LL; Shanklin DR; Adams PM; Brady ST J Neurosci Res; 1991 Jan; 28(1):121-33. PubMed ID: 1710281 [TBL] [Abstract][Full Text] [Related]
28. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Woo NS; Lu J; England R; McClellan R; Dufour S; Mount DB; Deutch AY; Lovinger DM; Delpire E Hippocampus; 2002; 12(2):258-68. PubMed ID: 12000122 [TBL] [Abstract][Full Text] [Related]
29. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis. Hall PF; Almahbobi G Microsc Res Tech; 1997 Mar; 36(6):463-79. PubMed ID: 9142693 [TBL] [Abstract][Full Text] [Related]
30. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Paavilainen VO; Bertling E; Falck S; Lappalainen P Trends Cell Biol; 2004 Jul; 14(7):386-94. PubMed ID: 15246432 [TBL] [Abstract][Full Text] [Related]
31. Long-term potentiation and sprouting of mossy fibers produced by brief episodes of hyperactivity. Represa A; Ben-Ari Y Epilepsy Res Suppl; 1992; 7():261-9. PubMed ID: 1334665 [TBL] [Abstract][Full Text] [Related]
32. Submembraneous microtubule cytoskeleton: interaction of TRPP2 with the cell cytoskeleton. Chen XZ; Li Q; Wu Y; Liang G; Lara CJ; Cantiello HF FEBS J; 2008 Oct; 275(19):4675-83. PubMed ID: 18754774 [TBL] [Abstract][Full Text] [Related]
33. The association of tau-like proteins with vimentin filaments in cultured cells. Capote C; Maccioni RB Exp Cell Res; 1998 Mar; 239(2):202-13. PubMed ID: 9521838 [TBL] [Abstract][Full Text] [Related]
34. AMPA receptor alterations precede mossy fiber sprouting in young children with temporal lobe epilepsy. Lynd-Balta E; Pilcher WH; Joseph SA Neuroscience; 2004; 126(1):105-14. PubMed ID: 15145077 [TBL] [Abstract][Full Text] [Related]
35. The pathophysiology of epilepsy. Russo ME Cornell Vet; 1981 Apr; 71(2):221-47. PubMed ID: 6260428 [TBL] [Abstract][Full Text] [Related]
36. Epilepsy genes: the link between molecular dysfunction and pathophysiology. Stafstrom CE; Tempel BL Ment Retard Dev Disabil Res Rev; 2000; 6(4):281-92. PubMed ID: 11107193 [TBL] [Abstract][Full Text] [Related]
38. Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic Phenomena. Gambino G; Rizzo V; Giglia G; Ferraro G; Sardo P Cell Mol Neurobiol; 2022 Apr; 42(3):533-543. PubMed ID: 32929563 [TBL] [Abstract][Full Text] [Related]
39. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. Bayless KJ; Johnson GA J Vasc Res; 2011; 48(5):369-85. PubMed ID: 21464572 [TBL] [Abstract][Full Text] [Related]