These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19430140)

  • 1. Simple and precise size-separation of microparticles by a nano-gap method.
    Enomoto Y; Monjushiro H; Watarai H
    Anal Sci; 2009 May; 25(5):605-10. PubMed ID: 19430140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro/nanoparticle separation via curved nano-gap device with enhanced size resolution.
    Ota N; Owa Y; Kawai T; Tanaka Y
    J Chromatogr A; 2016 Jul; 1455():172-177. PubMed ID: 27302689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size sorting of biological micro-particles by Newton-ring nano-gap device.
    Monjushiro H; Hatta M; Watarai H
    J Chromatogr A; 2006 Feb; 1106(1-2):205-10. PubMed ID: 16337643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary zone electrophoresis of sub-microm-sized particles in electrolyte solutions of various ionic strengths: size-dependent electrophoretic migration and separation efficiency.
    Radko SP; Stastna M; Chrambach A
    Electrophoresis; 2000 Nov; 21(17):3583-92. PubMed ID: 11271475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the carrier composition on thermal field-flow fractionation for the characterisation of sub-micron polystyrene latex particles.
    Mes EP; Tijssen R; Kok WT
    J Chromatogr A; 2001 Jan; 907(1-2):201-9. PubMed ID: 11217026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size separation of supermicrometer particles in asymmetrical flow field-flow fractionation. Flow conditions for rapid elution.
    Wahlund KG; Zattoni A
    Anal Chem; 2002 Nov; 74(21):5621-8. PubMed ID: 12433097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of polystyrene nanoparticles with different coatings using two-dimensional off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis.
    You Z; Jakubowski N; Panne U; Weidner SM
    J Chromatogr A; 2019 May; 1593():119-126. PubMed ID: 30704773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled flats on spherical polymer colloids.
    Ramírez LM; Milner ST; Snyder CE; Colby RH; Velegol D
    Langmuir; 2010 May; 26(10):7644-9. PubMed ID: 20041681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of particle size distribution of nano-particles by capillary zone electrophoresis].
    Xue Y; Yang H; Yang Y
    Se Pu; 2004 Sep; 22(5):490-3. PubMed ID: 15706937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating large microscale particles by exploiting charge differences with dielectrophoresis.
    Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH
    J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using capillary electrophoresis to characterize polymeric particles.
    Riley KR; Liu S; Yu G; Libby K; Cubicciotti R; Colyer CL
    J Chromatogr A; 2016 Sep; 1463():169-75. PubMed ID: 27543386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns.
    Op de Beeck J; De Malsche W; Vangelooven J; Gardeniers H; Desmet G
    J Chromatogr A; 2010 Sep; 1217(39):6077-84. PubMed ID: 20739026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New principle of electromagnetophoretic adsorption-desorption microchromatography.
    Iiguni Y; Watarai H
    J Chromatogr A; 2005 May; 1073(1-2):93-8. PubMed ID: 15909510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AFM study of the behavior of polystyrene and glass particles during the electrodeposition of copper.
    Dedeloudis C; Fransaer J
    Langmuir; 2004 Dec; 20(25):11030-8. PubMed ID: 15568855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-adjustable channel for split-flow lateral-transport thin separation of micrometer size particles.
    Kowalkowski T; Szparaga A; Buszewski B
    Talanta; 2014 Dec; 130():137-41. PubMed ID: 25159390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles.
    Choi S; Song S; Choi C; Park JK
    Anal Chem; 2009 Jan; 81(1):50-5. PubMed ID: 19117444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-field-flow fractionation: a versatile new separation method.
    Giddings JC; Yang FJ; Myers MN
    Science; 1976 Sep; 193(4259):1244-5. PubMed ID: 959835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of new micrometer-sized radiopaque polymeric particles of narrow size distribution by a single-step swelling of uniform polystyrene template microspheres for X-ray imaging applications.
    Galperin A; Margel S
    Biomacromolecules; 2006 Sep; 7(9):2650-60. PubMed ID: 16961329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.