These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 19430141)
1. Sensitivity enhancement of thermal-lens spectrometry using laser-induced precipitation. Nedosekin DA; Faubel W; Proskurnin MA; Pyell U Anal Sci; 2009 May; 25(5):611-6. PubMed ID: 19430141 [TBL] [Abstract][Full Text] [Related]
2. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry. Nedosekin DA; Faubel W; Proskurnin MA; Pyell U Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity enhancement in near-field photothermal-lens detection in capillary electrophoresis using laser-induced online precipitation. Nedosekin DA; Faubel W; Proskurnin MA; Pyell U Appl Spectrosc; 2011 Nov; 65(11):1275-80. PubMed ID: 22054087 [TBL] [Abstract][Full Text] [Related]
4. Mode-mismatched dual-beam differential thermal lensing with optical scheme design optimized using expert estimation for analytical measurements. Proskurnin MA; Volkov ME Appl Spectrosc; 2008 Apr; 62(4):439-49. PubMed ID: 18416904 [TBL] [Abstract][Full Text] [Related]
5. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation. Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158 [TBL] [Abstract][Full Text] [Related]
6. Optimization of instrumental parameters of a near-field thermal-lens detector for capillary electrophoresis. Proskurnin MA; Bendrysheva SN; Ragozina N; Heissler S; Faubel W; Pyell U Appl Spectrosc; 2005 Dec; 59(12):1470-9. PubMed ID: 16390585 [TBL] [Abstract][Full Text] [Related]
7. Laser induced thermal lens spectrometry for cobalt determination after cloud point extraction. Shemirani F; Shokoufi N Anal Chim Acta; 2006 Sep; 577(2):238-43. PubMed ID: 17723678 [TBL] [Abstract][Full Text] [Related]
8. Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser. Shang J; Zhu X; Zhu G Appl Opt; 2011 Nov; 50(32):6103-20. PubMed ID: 22083383 [TBL] [Abstract][Full Text] [Related]
9. Laser induced-thermal lens spectrometry after cloud point extraction for the determination of trace amounts of rhodium. Shokoufi N; Shemirani F Talanta; 2007 Oct; 73(4):662-7. PubMed ID: 19073086 [TBL] [Abstract][Full Text] [Related]
10. Thermooptical detection in microchips: from macro- to micro-scale with enhanced analytical parameters. Smirnova A; Proskurnin MA; Bendrysheva SN; Nedosekin DA; Hibara A; Kitamori T Electrophoresis; 2008 Jul; 29(13):2741-53. PubMed ID: 18546176 [TBL] [Abstract][Full Text] [Related]
11. Thermal lens studies of the reaction of iron (II) with 1,10-phenanthroline at the nanogram level. Chernysh VV; Kononets MY; Proskurnin MA; Pakhomova SV; Komissarov VV; Zatsman AI Fresenius J Anal Chem; 2001 Mar; 369(6):535-42. PubMed ID: 11336340 [TBL] [Abstract][Full Text] [Related]
12. Model for continuous-wave laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids. Nedosekin DA; Proskurnin MA; Kononets MY Appl Opt; 2005 Oct; 44(29):6296-306. PubMed ID: 16237948 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment. Zhang X; Li B Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872 [TBL] [Abstract][Full Text] [Related]
14. Near-field thermal lens detection at 257 nm as an alternative to absorption spectrometric detection in combination with electromigrative separation techniques. Ragozina N; Heissler S; Faubel W; Pyell U Anal Chem; 2002 Sep; 74(17):4480-7. PubMed ID: 12236359 [TBL] [Abstract][Full Text] [Related]
15. Laser induced-thermal lens spectrometry after cloud point extraction for the determination of trace amounts of palladium. Shokoufi N; Shemirani F; Shokoufi M Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):761-6. PubMed ID: 19729341 [TBL] [Abstract][Full Text] [Related]
16. Investigation of adsorption of nanogram quantities of iron(II) tris-(1,10-phenanthrolinate) on glasses and silica by thermal lens spectrometry. Kononets MY; Proskurnin MA; Bendrysheva SN; Chernysh VV Talanta; 2001 Mar; 53(6):1221-7. PubMed ID: 18968216 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis. Anctil G; McCarthy N; Piché M Appl Opt; 2000 Dec; 39(36):6787-98. PubMed ID: 18354693 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of Measurements of Thermophysical Parameters by Dual-Beam Thermal-Lens Spectrometry. Khabibullin VR; Franko M; Proskurnin MA Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770391 [TBL] [Abstract][Full Text] [Related]
19. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry. Cabrera H; Goljat L; Korte D; Marín E; Franko M Anal Chim Acta; 2020 Mar; 1100():182-190. PubMed ID: 31987139 [TBL] [Abstract][Full Text] [Related]
20. Feedback control of thermal lensing in a high optical power cavity. Fan Y; Zhao C; Degallaix J; Ju L; Blair DG; Slagmolen BJ; Hosken DJ; Brooks AF; Veitch PJ; Munch J Rev Sci Instrum; 2008 Oct; 79(10):104501. PubMed ID: 19044736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]