These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19430699)
21. Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus. Romkina AY; Kiriukhin MY PLoS One; 2017; 12(4):e0176056. PubMed ID: 28423051 [TBL] [Abstract][Full Text] [Related]
22. Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Raffaelli N; Finaurini L; Mazzola F; Pucci L; Sorci L; Amici A; Magni G Biochemistry; 2004 Jun; 43(23):7610-7. PubMed ID: 15182203 [TBL] [Abstract][Full Text] [Related]
23. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400. Bains J; Boulanger MJ J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753 [TBL] [Abstract][Full Text] [Related]
24. Primary structure of inorganic polyphosphate/ATP-NAD kinase from Micrococcus flavus, and occurrence of substrate inorganic polyphosphate for the enzyme. Kawai S; Mori S; Murata K Biosci Biotechnol Biochem; 2003 Aug; 67(8):1751-60. PubMed ID: 12951510 [TBL] [Abstract][Full Text] [Related]
25. Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. Mori S; Kawai S; Shi F; Mikami B; Murata K J Biol Chem; 2005 Jun; 280(25):24104-12. PubMed ID: 15855156 [TBL] [Abstract][Full Text] [Related]
26. Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Kawai S; Mori S; Mukai T; Suzuki S; Yamada T; Hashimoto W; Murata K Biochem Biophys Res Commun; 2000 Sep; 276(1):57-63. PubMed ID: 11006082 [TBL] [Abstract][Full Text] [Related]
27. NAD(P) biosynthesis enzymes as potential targets for selective drug design. Magni G; Di Stefano M; Orsomando G; Raffaelli N; Ruggieri S Curr Med Chem; 2009; 16(11):1372-90. PubMed ID: 19355893 [TBL] [Abstract][Full Text] [Related]
28. New Chemical Probe Targeting Bacterial NAD Kinase. Clément DA; Leseigneur C; Gelin M; Coelho D; Huteau V; Lionne C; Labesse G; Dussurget O; Pochet S Molecules; 2020 Oct; 25(21):. PubMed ID: 33105870 [TBL] [Abstract][Full Text] [Related]
29. NAD kinase from Bacillus licheniformis: inhibition by NADP and other properties. Zerez CR; Moul DE; Andreoli AJ Arch Microbiol; 1986 May; 144(4):313-6. PubMed ID: 3017250 [TBL] [Abstract][Full Text] [Related]
30. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. Bi J; Wang H; Xie J J Cell Physiol; 2011 Feb; 226(2):331-40. PubMed ID: 20857400 [TBL] [Abstract][Full Text] [Related]
31. Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions. Bieganowski P; Seidle HF; Wojcik M; Brenner C J Biol Chem; 2006 Aug; 281(32):22439-45. PubMed ID: 16760478 [TBL] [Abstract][Full Text] [Related]
32. Evidence for two NAD kinases in Salmonella typhimurium. Cheng W; Roth JR J Bacteriol; 1994 Jul; 176(14):4260-8. PubMed ID: 8021211 [TBL] [Abstract][Full Text] [Related]
33. NAD kinases use substrate-assisted catalysis for specific recognition of NAD. Poncet-Montange G; Assairi L; Arold S; Pochet S; Labesse G J Biol Chem; 2007 Nov; 282(47):33925-34. PubMed ID: 17686780 [TBL] [Abstract][Full Text] [Related]
34. The NAD Kinase Slr0400 Functions as a Growth Repressor in Synechocystis sp. PCC 6803. Ishikawa Y; Cassan C; Kadeer A; Yuasa K; Sato N; Sonoike K; Kaneko Y; Miyagi A; Takahashi H; Ishikawa T; Yamaguchi M; Nishiyama Y; Hihara Y; Gibon Y; Kawai-Yamada M Plant Cell Physiol; 2021 Sep; 62(4):668-677. PubMed ID: 33560438 [TBL] [Abstract][Full Text] [Related]
35. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri. Tang WG; Song P; Cao ZY; Wang P; Zhu GP FASEB J; 2015 Jun; 29(6):2462-72. PubMed ID: 25724193 [TBL] [Abstract][Full Text] [Related]
36. NAD+ Kinase as a Therapeutic Target in Cancer. Tedeschi PM; Bansal N; Kerrigan JE; Abali EE; Scotto KW; Bertino JR Clin Cancer Res; 2016 Nov; 22(21):5189-5195. PubMed ID: 27582489 [TBL] [Abstract][Full Text] [Related]
37. Enzymatic Characteristics of a Polyphosphate/ATP-NAD Kinase, PanK, from Myxococcus xanthus. Kimura Y; Kamimoto T; Tanaka N Curr Microbiol; 2020 Feb; 77(2):173-178. PubMed ID: 31741028 [TBL] [Abstract][Full Text] [Related]
38. Reconstitution and properties of the recombinant glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase supramolecular complex of Arabidopsis. Marri L; Trost P; Pupillo P; Sparla F Plant Physiol; 2005 Nov; 139(3):1433-43. PubMed ID: 16258009 [TBL] [Abstract][Full Text] [Related]
39. NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex. Mori S; Yamasaki M; Maruyama Y; Momma K; Kawai S; Hashimoto W; Mikami B; Murata K Biochem Biophys Res Commun; 2005 Feb; 327(2):500-8. PubMed ID: 15629142 [TBL] [Abstract][Full Text] [Related]
40. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. Outten CE; Culotta VC EMBO J; 2003 May; 22(9):2015-24. PubMed ID: 12727869 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]