These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 19431237)
41. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. Koike S; Kobayashi Y FEMS Microbiol Lett; 2001 Nov; 204(2):361-6. PubMed ID: 11731149 [TBL] [Abstract][Full Text] [Related]
42. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Mosoni P; Chaucheyras-Durand F; Béra-Maillet C; Forano E J Appl Microbiol; 2007 Dec; 103(6):2676-85. PubMed ID: 18045448 [TBL] [Abstract][Full Text] [Related]
43. Effects of different fresh-cut forages and their hays on feed intake, digestibility, heat production, and ruminal methane emission by Boer x Spanish goats. Puchala R; Animut G; Patra AK; Detweiler GD; Wells JE; Varel VH; Sahlu T; Goetsch AL J Anim Sci; 2012 Aug; 90(8):2754-62. PubMed ID: 22408087 [TBL] [Abstract][Full Text] [Related]
44. Use of real-time PCR technique in determination of major fibrolytic and non fibrolytic bacteria present in Indian Surti buffaloes (Bubalus bubalis). Singh KM; Tripathi AK; Pandya PR; Parnerkar S; Rank DN; Kothari RK; Joshi CG Pol J Microbiol; 2013; 62(2):195-200. PubMed ID: 24053023 [TBL] [Abstract][Full Text] [Related]
45. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Eun JS; Beauchemin KA J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444 [TBL] [Abstract][Full Text] [Related]
46. Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet. Lwin KO; Kondo M; Ban-Tokuda T; Lapitan RM; Del-Barrio AN; Fujihara T; Matsui H Anim Sci J; 2012 Dec; 83(12):767-76. PubMed ID: 23216542 [TBL] [Abstract][Full Text] [Related]
47. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. Bekele AZ; Koike S; Kobayashi Y FEMS Microbiol Lett; 2011 Mar; 316(1):51-60. PubMed ID: 21204927 [TBL] [Abstract][Full Text] [Related]
48. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen. Shinkai T; Mitsumori M; Sofyan A; Kanamori H; Sasaki H; Katayose Y; Takenaka A Anim Sci J; 2016 Nov; 87(11):1363-1370. PubMed ID: 26875748 [TBL] [Abstract][Full Text] [Related]
50. News & notes: paper digestion by the cellulolytic ruminal bacterium Fibrobacter succinogenes. Martin SA; Martin JA Curr Microbiol; 1998 Dec; 37(6):431-2. PubMed ID: 9806983 [TBL] [Abstract][Full Text] [Related]
51. Biochanin A improves fibre fermentation by cellulolytic bacteria. Harlow BE; Flythe MD; Aiken GE J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792 [TBL] [Abstract][Full Text] [Related]
52. In situ disappearance of malate from alfalfa and bermudagrass hay. Martin SA; Bertrand JA; Sauls B; Hill GM J Dairy Sci; 2000 Feb; 83(2):308-12. PubMed ID: 10714866 [TBL] [Abstract][Full Text] [Related]
53. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage. Min BR; Pinchak WE; Anderson RC; Hume ME J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591 [TBL] [Abstract][Full Text] [Related]
54. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study. Matulova M; Nouaille R; Capek P; Péan M; Forano E; Delort AM Appl Environ Microbiol; 2005 Mar; 71(3):1247-53. PubMed ID: 15746325 [TBL] [Abstract][Full Text] [Related]
55. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. Yang CM J Dairy Sci; 2002 May; 85(5):1183-90. PubMed ID: 12086054 [TBL] [Abstract][Full Text] [Related]
56. Effects of corn silage hybrids and dietary nonforage fiber sources on feed intake, digestibility, ruminal fermentation, and productive performance of lactating Holstein dairy cows. Holt MS; Williams CM; Dschaak CM; Eun JS; Young AJ J Dairy Sci; 2010 Nov; 93(11):5397-407. PubMed ID: 20965355 [TBL] [Abstract][Full Text] [Related]
57. The effect of dietary ratios of corn silage and alfalfa hay on carbohydrate digestion and retention time of feed particles in the gastrointestinal tract of steers. Obitsu T; Goto M; Sugino T; Taniguchi K; Yukizane K; Imoto S; Yanagawa M; El-Sabagh M Anim Sci J; 2009 Oct; 80(5):546-55. PubMed ID: 20163619 [TBL] [Abstract][Full Text] [Related]
58. Effect of alfalfa maturity on fiber utilization by high producing dairy cows. Llamas-Lamas G; Combs DK J Dairy Sci; 1990 Apr; 73(4):1069-80. PubMed ID: 2161023 [TBL] [Abstract][Full Text] [Related]
59. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Raut MP; Couto N; Karunakaran E; Biggs CA; Wright PC Sci Rep; 2019 Nov; 9(1):16542. PubMed ID: 31719545 [TBL] [Abstract][Full Text] [Related]
60. Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive. Holtshausen L; Chung YH; Gerardo-Cuervo H; Oba M; Beauchemin KA J Dairy Sci; 2011 Feb; 94(2):899-907. PubMed ID: 21257058 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]