BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1943140)

  • 21. Application of metabolic control analysis to the study of toxic effects of copper in muscle glycolysis.
    Jannaschk D; Burgos M; Centerlles JJ; Ovadi J; Cascante M
    FEBS Lett; 1999 Feb; 445(1):144-8. PubMed ID: 10069389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of Flux Control Coefficients from transient metabolite concentrations.
    Delgado J; Liao JC
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):919-27. PubMed ID: 1554375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two.
    van Dam K; van der Vlag J; Kholodenko BN; Westerhoff HV
    Eur J Biochem; 1993 Mar; 212(3):791-9. PubMed ID: 8462550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of the metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles. The sum of the flux control coefficients can drop significantly below unity.
    Kholodenko BN; Lyubarev AE; Kurganov BI
    Eur J Biochem; 1992 Nov; 210(1):147-53. PubMed ID: 1446668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cells.
    Holzhütter HG; Jacobasch G; Bisdorff A
    Eur J Biochem; 1985 May; 149(1):101-11. PubMed ID: 3996397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation.
    Thomas S; Fell DA
    Eur J Biochem; 1998 Dec; 258(3):956-67. PubMed ID: 9990313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Channelling can decrease pool size.
    Mendes P; Kell DB; Westerhoff HV
    Eur J Biochem; 1992 Feb; 204(1):257-66. PubMed ID: 1740137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining elasticities from multiple measurements of flux rates and metabolite concentrations. Application of the multiple modulation method to a reconstituted pathway.
    Giersch C
    Eur J Biochem; 1995 Jan; 227(1-2):194-201. PubMed ID: 7851386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells.
    Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS
    PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A metabolic control analysis approach to introduce the study of systems in biochemistry: the glycolytic pathway in the red blood cell.
    Angelani CR; Carabias P; Cruz KM; Delfino JM; de Sautu M; Espelt MV; Ferreira-Gomes MS; Gómez GE; Mangialavori IC; Manzi M; Pignataro MF; Saffioti NA; Salvatierra Fréchou DM; Santos J; Schwarzbaum PJ
    Biochem Mol Biol Educ; 2018 Sep; 46(5):502-515. PubMed ID: 30281891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis.
    Saavedra E; Encalada R; Pineda E; Jasso-Chávez R; Moreno-Sánchez R
    FEBS J; 2005 Apr; 272(7):1767-83. PubMed ID: 15794763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry.
    Teusink B; Passarge J; Reijenga CA; Esgalhado E; van der Weijden CC; Schepper M; Walsh MC; Bakker BM; van Dam K; Westerhoff HV; Snoep JL
    Eur J Biochem; 2000 Sep; 267(17):5313-29. PubMed ID: 10951190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling cancer glycolysis.
    Marín-Hernández A; Gallardo-Pérez JC; Rodríguez-Enríquez S; Encalada R; Moreno-Sánchez R; Saavedra E
    Biochim Biophys Acta; 2011 Jun; 1807(6):755-67. PubMed ID: 21110941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allometric scaling of flight energetics in orchid bees: evolution of flux capacities and flux rates.
    Darveau CA; Hochachka PW; Roubik DW; Suarez RK
    J Exp Biol; 2005 Sep; 208(Pt 18):3593-602. PubMed ID: 16155230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control.
    Klipp E; Heinrich R
    Biosystems; 1999 Dec; 54(1-2):1-14. PubMed ID: 10658833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the sign pattern of metabolic control coefficients.
    Sen AK
    J Theor Biol; 1996 Oct; 182(3):269-75. PubMed ID: 8944158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular concentrations of enzymes and their substrates.
    Albe KR; Butler MH; Wright BE
    J Theor Biol; 1990 Mar; 143(2):163-95. PubMed ID: 2200929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis.
    De RK; Tomar N
    J Bioinform Comput Biol; 2012 Dec; 10(6):1250019. PubMed ID: 22913632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis.
    Zammit VA; Beis I; Newsholme EA
    Biochem J; 1978 Sep; 174(3):989-98. PubMed ID: 215127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.