These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1943142)

  • 41. Different enzyme kinetic models.
    Seibert E; Tracy TS
    Methods Mol Biol; 2014; 1113():23-35. PubMed ID: 24523107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A theoretical treatment of damped oscillations in the transient state kinetics of single-enzyme reactions.
    Ryde-Pettersson U
    Eur J Biochem; 1989 Dec; 186(1-2):145-8. PubMed ID: 2598925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids.
    Gatt S; Bartfai T
    Biochim Biophys Acta; 1977 Jul; 488(1):1-12. PubMed ID: 889849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diffusional falsification of kinetic constants on Lineweaver-Burk plots.
    Ghim YS; Chang HN
    J Theor Biol; 1983 Nov; 105(1):91-102. PubMed ID: 6656277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Regulatory reversible enzymic reactions. Theoretical analysis].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1978; 12(5):1139-51. PubMed ID: 739998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants.
    Berg OG; Yu BZ; Rogers J; Jain MK
    Biochemistry; 1991 Jul; 30(29):7283-97. PubMed ID: 1854737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of uncertainties in biochemical reactions.
    Mišković L; Hatzimanikatis V
    Biotechnol Bioeng; 2011 Feb; 108(2):413-23. PubMed ID: 20830674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Friction analysis of kinetic schemes: the friction coefficient.
    Lolkema JS
    Biochim Biophys Acta; 1995 Oct; 1252(2):284-94. PubMed ID: 7578235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions.
    Elliott AC; K S; Sinnott ML; Smith PJ; Bommuswamy J; Guo Z; Hall BG; Zhang Y
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):155-64. PubMed ID: 1540130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methods of determining rate constants in single-substrate-single-product enzyme reactions. Use of induced transport: limitations of product inhibition.
    Britton HG
    Biochem J; 1973 Jun; 133(2):255-61. PubMed ID: 4723775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase.
    Pérez JA; Ferguson SJ
    Biochemistry; 1990 Nov; 29(46):10503-18. PubMed ID: 2148690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simplifying principles for chemical and enzyme reaction kinetics.
    Klonowski W
    Biophys Chem; 1983 Sep; 18(2):73-87. PubMed ID: 6626688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The inactivation kinetics of papain by guanidine hydrochloride: a re-analysis.
    Wang ZX; Wu JW; Tsou CL
    Biochim Biophys Acta; 1998 Oct; 1388(1):84-92. PubMed ID: 9774709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dependence of the Enzymatic Velocity on the Substrate Dissociation Rate.
    Berezhkovskii AM; Szabo A; Rotbart T; Urbakh M; Kolomeisky AB
    J Phys Chem B; 2017 Apr; 121(15):3437-3442. PubMed ID: 28423908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolutionary optimization of the catalytic effectiveness of an enzyme.
    Burbaum JJ; Raines RT; Albery WJ; Knowles JR
    Biochemistry; 1989 Nov; 28(24):9293-305. PubMed ID: 2611230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simplified approach to derive Cleland model for enzymatic reactions.
    Saraswathi G; Panda T; Basak T
    Biotechnol Lett; 2013 May; 35(5):785-9. PubMed ID: 23455878
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain.
    Plesner IW; Plesner L
    Biochim Biophys Acta; 1981 Nov; 648(2):231-46. PubMed ID: 6272852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.