These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1943151)

  • 21. Tissue-specific effects of acute aluminium exposure on the radiation-induced bystander effect in rainbow trout (Oncorhynchus mykiss, Walbaum).
    Smith RW; Seymour CB; Moccia RD; Mothersill CE
    Int J Radiat Biol; 2015; 91(9):715-23. PubMed ID: 26073529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The functional ontogeny of the teleost gill: which comes first, gas or ion exchange?
    Rombough P
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):732-42. PubMed ID: 17451987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiated neuroblastoma cells are more susceptible to aluminium toxicity than developing cells.
    Roll M; Banin E; Meiri H
    Arch Toxicol; 1989; 63(3):231-7. PubMed ID: 2764711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of an aluminium-26 tracer to study the deposition of aluminium species on fish gills following mixing of limed and acidic waters.
    Oughton DH; Salbu B; Bjørnstad HE; Day JP
    Analyst; 1992 Mar; 117(3):619-21. PubMed ID: 1580409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of acute silver toxicity in marine invertebrates.
    Bianchini A; Playle RC; Wood CM; Walsh PJ
    Aquat Toxicol; 2005 Mar; 72(1-2):67-82. PubMed ID: 15748748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Claudin-6, -10d and -10e contribute to seawater acclimation in the euryhaline puffer fish Tetraodon nigroviridis.
    Bui P; Kelly SP
    J Exp Biol; 2014 May; 217(Pt 10):1758-67. PubMed ID: 24526724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxic effects of an anionic detergent on the lipid constituents of various cell types of the gill epithelium of Rita rita: a histochemical investigation.
    Roy D
    Biomed Environ Sci; 1989 Dec; 2(4):312-7. PubMed ID: 2604897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conflict and Compromise: Using Reversible Remodeling to Manage Competing Physiological Demands at the Fish Gill.
    Gilmour KM; Perry SF
    Physiology (Bethesda); 2018 Nov; 33(6):412-422. PubMed ID: 30303775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium silicate as alternative to liming-reduced aluminium toxicity for Atlantic salmon (Salmo salar L.) in unstable mixing zones.
    Teien HC; Kroglund F; Atland A; Rosseland BO; Salbu B
    Sci Total Environ; 2006 Apr; 358(1-3):151-63. PubMed ID: 16225906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results.
    Playle RC
    Aquat Toxicol; 2004 May; 67(4):359-70. PubMed ID: 15084412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay.
    Natsch A; Laue H; Haupt T; von Niederhäusern V; Sanders G
    Environ Toxicol Chem; 2018 Mar; 37(3):931-941. PubMed ID: 29105821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Derivation of a water quality guideline for aluminium in marine waters.
    Golding LA; Angel BM; Batley GE; Apte SC; Krassoi R; Doyle CJ
    Environ Toxicol Chem; 2015 Jan; 34(1):141-51. PubMed ID: 25318392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atlantic salmon (Salmo salar L.) smolts require more than two weeks to recover from acidic water and aluminium exposure.
    Nilsen TO; Ebbesson LO; Handeland SO; Kroglund F; Finstad B; Angotzi AR; Stefansson SO
    Aquat Toxicol; 2013 Oct; 142-143():33-44. PubMed ID: 23948076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water.
    Matsuo AY; Wood CM; Val AL
    Aquat Toxicol; 2005 Sep; 74(4):351-64. PubMed ID: 16051381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.).
    Alstad NE; Kjelsberg BM; Vøllestad LA; Lydersen E; Poléo AB
    Environ Pollut; 2005 Jan; 133(2):333-42. PubMed ID: 15519464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid-base regulation in fishes: cellular and molecular mechanisms.
    Claiborne JB; Edwards SL; Morrison-Shetlar AI
    J Exp Zool; 2002 Aug; 293(3):302-19. PubMed ID: 12115903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.
    Brauner CJ; Rombough PJ
    Respir Physiol Neurobiol; 2012 Dec; 184(3):293-300. PubMed ID: 22884973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is Cl- protection against silver toxicity due to chemical speciation?
    Bielmyer GK; Brix KV; Grosell M
    Aquat Toxicol; 2008 Apr; 87(2):81-7. PubMed ID: 18304659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Influence of moderate beer consumption on aluminium toxico-kynetics: acute study].
    Peña A; Meseguer I; González-Muñoz MJ
    Nutr Hosp; 2007; 22(3):371-6. PubMed ID: 17612380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes.
    Zaccone G; Mauceri A; Fasulo S
    J Exp Zool A Comp Exp Biol; 2006 May; 305(5):428-39. PubMed ID: 16506226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.