BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19431667)

  • 1. Theory of picosecond-laser-induced fluorescence from highly excited complexes with small numbers of chromophores.
    Gülen D; Wittmershaus BP; Knox RS
    Biophys J; 1986 Feb; 49(2):469-77. PubMed ID: 19431667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond processes in chromatophores at various excitation intensities.
    Valkunas L; Liuolia V; Freiberg A
    Photosynth Res; 1991 Feb; 27(2):83-95. PubMed ID: 24414572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton annihilation in the two photosystems in chloroplasts at 100 degrees K.
    Geacintov NE; Breton J
    Biophys J; 1977 Jan; 17(1):1-15. PubMed ID: 831854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission.
    Burdett JJ; Gosztola D; Bardeen CJ
    J Chem Phys; 2011 Dec; 135(21):214508. PubMed ID: 22149803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.
    Herbert JM; Zhang X; Morrison AF; Liu J
    Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy.
    Wörmke S; Mackowski S; Brotosudarmo TH; Jung C; Zumbusch A; Ehrl M; Scheer H; Hofmann E; Hiller RG; Bräuchle C
    Biochim Biophys Acta; 2007 Jul; 1767(7):956-64. PubMed ID: 17572378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density.
    Schatz GH; Brock H; Holzwarth AR
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8414-8. PubMed ID: 16593899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of exciton annihilation in complexes of a finite number of molecular sites.
    Gülen D
    Math Biosci; 1990 Nov; 102(1):21-39. PubMed ID: 2134489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical effects of sodium dodecyl sulfate treatment of the isolated light harvesting complex of higher plants.
    Gülen D; Knox R; Breton J
    Photosynth Res; 1986 Jan; 9(1-2):13-20. PubMed ID: 24442280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet-triplet annihilation in single LHCII complexes.
    Gruber JM; Chmeliov J; Krüger TP; Valkunas L; van Grondelle R
    Phys Chem Chem Phys; 2015 Aug; 17(30):19844-53. PubMed ID: 26156159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.
    Vasil'ev S; Bruce D
    Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems.
    May V
    Dalton Trans; 2009 Dec; (45):10086-105. PubMed ID: 19904437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear annihilation of excitations in photosynthetic systems.
    Valkunas L; Trinkunas G; Liuolia V; van Grondelle R
    Biophys J; 1995 Sep; 69(3):1117-29. PubMed ID: 8519966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-vibronic quantum dynamics for ultrafast excited-state processes.
    Eng J; Gourlaouen C; Gindensperger E; Daniel C
    Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II.
    Renger T; Madjet ME; Knorr A; Müh F
    J Plant Physiol; 2011 Aug; 168(12):1497-509. PubMed ID: 21330003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes.
    Trinkunas G; Holzwarth AR
    Biophys J; 1994 Feb; 66(2 Pt 1):415-29. PubMed ID: 8161695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Picosecond fluorescence from photosynthetic systems in vivo.
    Searle GF; Tredwell CJ
    Ciba Found Symp; 1978 Feb 7-9; (61):257-81. PubMed ID: 256533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenching of fluorescence by triplet excited states in chloroplasts.
    Breton J; Geacintov NE; Swenberg CE
    Biochim Biophys Acta; 1979 Dec; 548(3):616-35. PubMed ID: 508739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A picosecond pulse train study of exciton dynamics in photosynthetic membranes.
    Geacintov NE; Swenberg CE; Campillo AJ; Hyer RC; Shapiro SL; Winn KR
    Biophys J; 1978 Oct; 24(1):347-59. PubMed ID: 708838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation quenching in chlorophyll-carotenoid antenna systems: 'coherent' or 'incoherent'.
    Balevičius V; Duffy CDP
    Photosynth Res; 2020 Jun; 144(3):301-315. PubMed ID: 32266612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.