These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19431764)

  • 1. Pore formation kinetics in membranes, determined from the release of marker molecules out of liposomes or cells.
    Schwarz G; Robert CH
    Biophys J; 1990 Sep; 58(3):577-83. PubMed ID: 19431764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of pore-mediated release of marker molecules from liposomes or cells.
    Schwarz G; Robert CH
    Biophys Chem; 1992 Apr; 42(3):291-6. PubMed ID: 1581523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye.
    Schwarz G; Arbuzova A
    Biochim Biophys Acta; 1995 Oct; 1239(1):51-7. PubMed ID: 7548144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionophore-mediated transmembrane movement of divalent cations in small unilamellar liposomes: an evaluation of the chlortetracycline fluorescence technique and correlations with black lipid membrane studies.
    Mathew MK; Nagaraj R; Balaram P
    J Membr Biol; 1982; 65(1-2):13-7. PubMed ID: 7057457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug release through liposome pores.
    Dan N
    Colloids Surf B Biointerfaces; 2015 Feb; 126():80-6. PubMed ID: 25546834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of melittin induced pore formation in the membrane of lipid vesicles.
    Schwarz G; Zong RT; Popescu T
    Biochim Biophys Acta; 1992 Sep; 1110(1):97-104. PubMed ID: 1390840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.
    Wrona A; Kubica K
    J Liposome Res; 2018 Sep; 28(3):218-225. PubMed ID: 28641466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles.
    Rex S; Schwarz G
    Biochemistry; 1998 Feb; 37(8):2336-45. PubMed ID: 9485380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension.
    Zhelev DV; Needham D
    Biochim Biophys Acta; 1993 Apr; 1147(1):89-104. PubMed ID: 8466935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis.
    Arbuzova A; Schwarz G
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):139-52. PubMed ID: 10446298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin.
    Schwarz G; Stankowski S; Rizzo V
    Biochim Biophys Acta; 1986 Sep; 861(1):141-51. PubMed ID: 3756150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion Pore Formation Observed during SNARE-Mediated Vesicle Fusion with Pore-Spanning Membranes.
    Mühlenbrock P; Herwig K; Vuong L; Mey I; Steinem C
    Biophys J; 2020 Jul; 119(1):151-161. PubMed ID: 32533941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X.
    Hernandez VA; Scholz F
    Langmuir; 2006 Dec; 22(25):10723-31. PubMed ID: 17129052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location and dynamics of alamethicin in unilamellar vesicles and thylakoids as model systems. A spin label study.
    Wille B; Franz B; Jung G
    Biochim Biophys Acta; 1989 Nov; 986(1):47-60. PubMed ID: 2554981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles.
    Ahamed MK; Karal MAS; Ahmed M; Ahammed S
    Eur Biophys J; 2020 Jul; 49(5):371-381. PubMed ID: 32494845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of charge and size on the interaction of unilamellar liposomes with macrophages.
    Schwendener RA; Lagocki PA; Rahman YE
    Biochim Biophys Acta; 1984 Apr; 772(1):93-101. PubMed ID: 6712952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effect of antibiotic amphotericin B on ion transport across model lipid membranes and tonoplast membranes.
    Hereć M; Dziubińska H; Trebacz K; Morzycki JW; Gruszecki WI
    Biochem Pharmacol; 2005 Sep; 70(5):668-75. PubMed ID: 16023082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin.
    Schwarz G; Gerke H; Rizzo V; Stankowski S
    Biophys J; 1987 Nov; 52(5):685-92. PubMed ID: 3427183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occupancy distributions of membrane proteins in heterogeneous liposome populations.
    Cliff L; Chadda R; Robertson JL
    Biochim Biophys Acta Biomembr; 2020 Jan; 1862(1):183033. PubMed ID: 31394099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.