BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19431792)

  • 1. Polarized fluorescence measurements on ordered photosynthetic antenna complexes: Chlorosomes of Chloroflexus aurantiacus and B800-B850 antenna complexes of Rhodobacter sphaeroides.
    van Amerongen H; van Haeringen B; van Gurp M; van Grondelle R
    Biophys J; 1991 May; 59(5):992-1001. PubMed ID: 19431792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus : II. The chlorosome.
    van Dorssen RJ; Vasmel H; Amesz J
    Photosynth Res; 1986 Jan; 9(1-2):33-45. PubMed ID: 24442282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear dichroism of chlorosomes from chloroflexus aurantiacus in compressed gels and electric fields.
    van Amerongen H; Vasmel H; van Grondelle R
    Biophys J; 1988 Jul; 54(1):65-76. PubMed ID: 19431726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus : I. The cytoplasmic membrane.
    Vasmel H; Van Dorssen RJ; De Vos GJ; Amesz J
    Photosynth Res; 1986 Jan; 7(3):281-94. PubMed ID: 24443124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth.
    Ma YZ; Cox RP; Gillbro T; Miller M
    Photosynth Res; 1996 Feb; 47(2):157-65. PubMed ID: 24301823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus.
    Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z
    Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus.
    Shibata Y; Saga Y; Tamiaki H; Itoh S
    Biochemistry; 2007 Jun; 46(23):7062-8. PubMed ID: 17503774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of cytochrome c2 in electron transfer complexes with the photosynthetic reaction center of Rhodobacter sphaeroides: optical linear dichroism and EPR.
    Drepper F; Mathis P
    Biochemistry; 1997 Feb; 36(6):1428-40. PubMed ID: 9063891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral identification of the electrochromically active carotenoids of Rhodobacter sphaeroides in chromatophores and reconstituted liposomes.
    Crielaard W; van Mourik F; van Grondelle R; Konings WN; Hellingwerf KJ
    Biochim Biophys Acta; 1992 Apr; 1100(1):9-14. PubMed ID: 1567885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative method for studying orientation of transition dipoles in membrane vesicles of spherical symmetry.
    Kiss LI; Ganago AO; Garab GI
    J Biochem Biophys Methods; 1985 Oct; 11(4-5):213-25. PubMed ID: 4067172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular organization of bacteriochlorophyll in chlorosomes of the green photosynthetic bacteriumChloroflexus aurantiacus: Studies of fluorescence depolarization accompanied by energy transfer processes.
    Mimuro M; Hirota M; Nishimura Y; Moriyama T; Yamazaki I; Shimada K; Matsuura K
    Photosynth Res; 1994 Jul; 41(1):181-91. PubMed ID: 24310025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides.
    Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN
    Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus.
    Brune DC; King GH; Infosino A; Steiner T; Thewalt ML; Blankenship RE
    Biochemistry; 1987 Dec; 26(26):8652-8. PubMed ID: 3442680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra.
    Prokhorenko VI; Steensgaard DB; Holzwarth AR
    Biophys J; 2003 Nov; 85(5):3173-86. PubMed ID: 14581217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus.
    Müller MG; Griebenow K; Holzwarth AR
    Biochim Biophys Acta; 1993 Sep; 1144(2):161-9. PubMed ID: 8369334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular exciton models for BChl c antennae in chlorosomes from green photosynthetic bacteria.
    Buck DR; Struve WS
    Photosynth Res; 1996 Jun; 48(3):367-77. PubMed ID: 24271477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria.
    Saga Y; Shibata Y; Itoh S; Tamiaki H
    J Phys Chem B; 2007 Nov; 111(43):12605-9. PubMed ID: 17918876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria.
    Furumaki S; Vacha F; Habuchi S; Tsukatani Y; Bryant DA; Vacha M
    J Am Chem Soc; 2011 May; 133(17):6703-10. PubMed ID: 21476570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments.
    Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T
    Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.