These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19431812)

  • 1. Structural investigation of bacteriorhodopsin and some of its photoproducts by polarized Fourier transform infrared spectroscopic methods-difference spectroscopy and photoselection.
    Fahmy K; Siebert F; Tavan P
    Biophys J; 1991 Nov; 60(5):989-1001. PubMed ID: 19431812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation of the bacteriorhodopsin chromophore probed by polarized Fourier transform infrared difference spectroscopy.
    Earnest TN; Roepe P; Braiman MS; Gillespie J; Rothschild KJ
    Biochemistry; 1986 Dec; 25(24):7793-8. PubMed ID: 3801443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
    Bagley K; Dollinger G; Eisenstein L; Singh AK; Zimányi L
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4972-6. PubMed ID: 6956906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature.
    He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ
    Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86.
    Rothschild KJ; Gray D; Mogi T; Marti T; Braiman MS; Stern LJ; Khorana HG
    Biochemistry; 1989 Aug; 28(17):7052-9. PubMed ID: 2819048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence for the interaction of aspartic acid 212 with tyrosine 185 and possible role in the proton pump mechanism.
    Rothschild KJ; Braiman MS; He YW; Marti T; Khorana HG
    J Biol Chem; 1990 Oct; 265(28):16985-91. PubMed ID: 2211604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds.
    Rothschild KJ; He YW; Sonar S; Marti T; Khorana HG
    J Biol Chem; 1992 Jan; 267(3):1615-22. PubMed ID: 1730706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved fourier transform infrared study of structural changes in the last steps of the photocycles of Glu-204 and Leu-93 mutants of bacteriorhodopsin.
    Kandori H; Yamazaki Y; Hatanaka M; Needleman R; Brown LS; Richter HT; Lanyi JK; Maeda A
    Biochemistry; 1997 Apr; 36(17):5134-41. PubMed ID: 9136874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.
    Lórenz-Fonfría VA; Kandori H; Padrós E
    J Phys Chem B; 2011 Jun; 115(24):7972-85. PubMed ID: 21615095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K.
    Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP
    Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle.
    Rothschild KJ; He YW; Gray D; Roepe PD; Pelletier SL; Brown RS; Herzfeld J
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes in bacteriorhodopsin during the photocycle measured by time-resolved polarized Fourier transform infrared spectroscopy.
    Kelemen L; Ormos P
    Biophys J; 2001 Dec; 81(6):3577-89. PubMed ID: 11721018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct.
    Rath P; Krebs MP; He Y; Khorana HG; Rothschild KJ
    Biochemistry; 1993 Mar; 32(9):2272-81. PubMed ID: 8443170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy.
    Weidlich O; Friedman N; Sheves M; Siebert F
    Biochemistry; 1995 Oct; 34(41):13502-10. PubMed ID: 7577939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1992 Jan; 31(2):462-7. PubMed ID: 1731905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85-->Asn.
    Nilsson A; Rath P; Olejnik J; Coleman M; Rothschild KJ
    J Biol Chem; 1995 Dec; 270(50):29746-51. PubMed ID: 8530365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low temperature investigation of the intermediates of the photocycle of light-adapted bacteriorhodopsin. Optical absorption and fluorescence measurements.
    Kriebel AN; Gillbro T; Wild UP
    Biochim Biophys Acta; 1979 Apr; 546(1):106-20. PubMed ID: 444490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.