These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19431837)

  • 1. Nanosecond photolytic interruption of bacteriorhodopsin photocycle: K-590 --> BR-570 reaction.
    Bazhenov V; Schmidt P; Atkinson GH
    Biophys J; 1992 Jun; 61(6):1630-7. PubMed ID: 19431837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved absorption and fluorescence from the bacteriorhodopsin photocycle in the nanosecond time regime.
    Delaney JK; Brack TL; Atkinson GH
    Biophys J; 1993 May; 64(5):1512-9. PubMed ID: 19431895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy storage in the primary step of the photocycle of bacteriorhodopsin.
    Birge RR; Cooper TM
    Biophys J; 1983 Apr; 42(1):61-9. PubMed ID: 6838982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.
    Atkinson GH; Blanchard D; Lemaire H; Brack TL; Hayashi H
    Biophys J; 1989 Feb; 55(2):263-74. PubMed ID: 2713439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photolytic interruptions of the bacteriorhodopsin photocycle examined by time-resolved resonance raman spectroscopy.
    Grieger I; Atkinson GH
    Biochemistry; 1985 Sep; 24(20):5660-5. PubMed ID: 4074721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin.
    Steinberg G; Sheves M; Bressler S; Ottolenghi M
    Biochemistry; 1994 Oct; 33(41):12439-50. PubMed ID: 7918466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum efficiencies of bacteriorhodopsin photochemical reactions.
    Xie AH
    Biophys J; 1990 Nov; 58(5):1127-32. PubMed ID: 2291939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11.
    Brack TL; Delaney JK; Atkinson GH; Albeck A; Sheves M; Ottolenghi M
    Biophys J; 1993 Aug; 65(2):964-72. PubMed ID: 8218919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low temperature investigation of the intermediates of the photocycle of light-adapted bacteriorhodopsin. Optical absorption and fluorescence measurements.
    Kriebel AN; Gillbro T; Wild UP
    Biochim Biophys Acta; 1979 Apr; 546(1):106-20. PubMed ID: 444490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.
    Weidlich O; Ujj L; Jäger F; Atkinson GH
    Biophys J; 1997 May; 72(5):2329-41. PubMed ID: 9129836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the protein residues that control the yield and kinetics of O(630) in the photocycle of bacteriorhodopsin.
    Li Q; Bressler S; Ovrutsky D; Ottolenghi M; Friedman N; Sheves M
    Biophys J; 2000 Jan; 78(1):354-62. PubMed ID: 10620299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The quantum efficiency of the bacteriorhodopsin photocycle.
    Goldschmidt CR; Kalisky O; Rosenfeld T; Ottolenghi M
    Biophys J; 1977 Feb; 17(2):179-83. PubMed ID: 836935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early picosecond events in the photocycle of bacteriorhodopsin.
    Polland HJ; Franz MA; Zinth W; Kaiser W; Kölling E; Oesterhelt D
    Biophys J; 1986 Mar; 49(3):651-62. PubMed ID: 19431670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the primary quantum yields in the bacteriorhodopsin photocycle.
    Goldschmidt CR; Ottolenghi M; Korenstein R
    Biophys J; 1976 Jul; 16(7):839-43. PubMed ID: 938722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the molecular mechanisms of the Schiff base deprotonation during the bacteriorhodopsin photocycle.
    Chronister EL; Corcoran TC; Song L; El-Sayed MA
    Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8580-4. PubMed ID: 16578793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment.
    Delaney JK; Brack TL; Atkinson GH; Ottolenghi M; Steinberg G; Sheves M
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2101-5. PubMed ID: 7892231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin.
    Friedman N; Gat Y; Sheves M; Ottolenghi M
    Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time-resolved spectral study of the K and KL intermediates of bacteriorhodopsin.
    Milder SJ; Kliger DS
    Biophys J; 1988 Mar; 53(3):465-8. PubMed ID: 3349137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.