These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19431883)

  • 1. Mechanism of response of potential-sensitive dyes studied by time-resolved fluorescence.
    Das TK; Periasamy N; Krishnamoorthy G
    Biophys J; 1993 Apr; 64(4):1122-32. PubMed ID: 19431883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous response of oxonol-V to membrane potential in mitochondrial proton pumps.
    Ahmed I; Krishnamoorthy G
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):131-8. PubMed ID: 7947900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxonol-V as a probe of chromaffin granule membrane potentials.
    Scherman D; Henry JP
    Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ; Apell HJ
    Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells.
    Epps DE; Wolfe ML; Groppi V
    Chem Phys Lipids; 1994 Feb; 69(2):137-50. PubMed ID: 8181103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of membrane potential deltapsi in reconstituted plasma membrane vesicles using a numerical model of oxonol VI distribution.
    Portele A; Lenz J; Höfer M
    J Bioenerg Biomembr; 1997 Dec; 29(6):603-9. PubMed ID: 9559861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation.
    Cooper CE; Bruce D; Nicholls P
    Biochemistry; 1990 Apr; 29(16):3859-65. PubMed ID: 2162199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry.
    Kataoka M; Fukura Y; Shinohara Y; Baba Y
    Electrophoresis; 2005 Aug; 26(15):3025-31. PubMed ID: 16078196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives.
    Scaduto RC; Grotyohann LW
    Biophys J; 1999 Jan; 76(1 Pt 1):469-77. PubMed ID: 9876159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781.
    Freedman JC; Novak TS
    J Membr Biol; 1983; 72(1-2):59-74. PubMed ID: 6406671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical probes of membrane potential.
    Waggoner A
    J Membr Biol; 1976 Jun; 27(4):317-34. PubMed ID: 787526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of hypoxic-ischemic brain injury by flow cytometric analysis of mitochondrial membrane potential with JC-1 in neonatal rats.
    Sung DK; Chang YS; Kang S; Song HY; Park WS; Lee BH
    J Neurosci Methods; 2010 Nov; 193(2):232-8. PubMed ID: 20817028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static and dynamic studies of the potential-sensitive membrane probe RH421 in dimyristoylphosphatidylcholine vesicles.
    Zouni A; Clarke RJ; Visser AJ; Visser NV; Holzwarth JF
    Biochim Biophys Acta; 1993 Dec; 1153(2):203-12. PubMed ID: 8274489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic regulation of proton chemical (pH) and electrical gradients in lung lamellar bodies.
    Wadsworth SJ; Spitzer AR; Chander A
    Am J Physiol; 1997 Aug; 273(2 Pt 1):L427-36. PubMed ID: 9277456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum.
    Allen RJ; Kirk K
    J Biol Chem; 2004 Mar; 279(12):11264-72. PubMed ID: 14630911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impermeant potential-sensitive oxonol dyes: I. Evidence for an "on-off" mechanism.
    George EB; Nyirjesy P; Basson M; Ernst LA; Pratap PR; Freedman JC; Waggoner AS
    J Membr Biol; 1988 Aug; 103(3):245-53. PubMed ID: 3184175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impermeant potential-sensitive oxonol dyes: II. The dependence of the absorption signal on the length of alkyl substituents attached to the dye.
    Nyirjesy P; George EB; Gupta RK; Basson M; Pratap PR; Freedman JC; Raman K; Waggoner AS
    J Membr Biol; 1988 Oct; 105(1):45-53. PubMed ID: 3225835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cells with different mitochondrial membrane potential during apoptosis.
    Lugli E; Troiano L; Ferraresi R; Roat E; Prada N; Nasi M; Pinti M; Cooper EL; Cossarizza A
    Cytometry A; 2005 Nov; 68(1):28-35. PubMed ID: 16184612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.