These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19431886)

  • 1. Raman dispersion spectroscopy probes heme distortions in deoxyHb-trout IV involved in its T-state Bohr effect.
    Schweitzer-Stenner R; Bosenbeck M; Dreybrodt W
    Biophys J; 1993 Apr; 64(4):1194-209. PubMed ID: 19431886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of structural variations in the F- and FG-helix of the beta-subunit modified oxyHb-NES on the heme structure detected by resonance Raman spectroscopy.
    Schweitzer-Stenner R; Wedekind D; Dreybrodt W
    Eur Biophys J; 1989; 17(2):87-100. PubMed ID: 2767001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of heme distortions and heme-protein coupling in the isolated subunits of oxygenated human hemoglobin by resonance Raman dispersion spectroscopy.
    Schweitzer-Stenner R; Dannemann U; Dreybrodt W
    Biochemistry; 1992 Jan; 31(3):694-702. PubMed ID: 1731925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of pH-induced symmetry distortions of the prosthetic group in oxyhaemoglobin by resonance Raman scattering.
    Schweitzer-Stenner R; Dreybrodt W; Wedekind D; el Naggar S
    Eur Biophys J; 1984; 11(1):61-76. PubMed ID: 6468345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of the heme perturbations caused by the quaternary R----T transition in oxyhemoglobin trout IV by resonance Raman scattering.
    Schweitzer-Stenner R; Wedekind D; Dreybrodt W
    Biophys J; 1989 Apr; 55(4):703-12. PubMed ID: 2720068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy.
    Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T
    Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman evidence for cleavage of the Fe-N epsilon(His-F8) bond in the alpha subunit of the T-structure nitrosylhemoglobin.
    Nagai K; Welborn C; Dolphin D; Kitagawa T
    Biochemistry; 1980 Oct; 19(21):4755-61. PubMed ID: 7426627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correspondence of the pK values of oxyHb-titration states detected by resonance Raman scattering to kinetic data of ligand dissociation and association.
    Schweitzer-Stenner R; Wedekind D; Dreybrodt W
    Biophys J; 1986 May; 49(5):1077-88. PubMed ID: 3708092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static normal coordinate deformations of the heme group in mutants of ferrocytochrome c from Saccharomyces cerevisiae probed by resonance Raman spectroscopy.
    Schweitzer-Stenner R; Huang Q; Hagarman A; Laberge M; Wallace CJ
    J Phys Chem B; 2007 Jun; 111(23):6527-33. PubMed ID: 17508736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement.
    Morikis D; Champion PM; Springer BA; Sligar SG
    Biochemistry; 1989 May; 28(11):4791-800. PubMed ID: 2765511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman studies of dioxygen and carbon monoxide binding to imidazole-appended hemes.
    Yu NT; Thompson HM; Chang CK
    Biophys J; 1987 Feb; 51(2):283-7. PubMed ID: 3828461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal coordinate structural decomposition of the heme distortions of hemoglobin in various quaternary states and bound to allosteric effectors.
    Laberge M; Yonetani T; Fidy J
    Mol Divers; 2003; 7(1):15-23. PubMed ID: 14768900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme.
    Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T
    Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heme c-peptide model system for the resonance Raman study of c-type cytochromes: characterization of the solvent-dependence of peptide-histidine-heme interactions.
    Othman S; Le Lirzin A; Desbois A
    Biochemistry; 1993 Sep; 32(37):9781-91. PubMed ID: 8396971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase.
    Smulevich G; Miller MA; Kraut J; Spiro TG
    Biochemistry; 1991 Oct; 30(39):9546-58. PubMed ID: 1654102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.