BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19431930)

  • 1. Ultraviolet femtosecond laser creation of corneal flap.
    Le Harzic R; König K; Wüllner C; Vogler K; Dnitzky C
    J Refract Surg; 2009 Apr; 25(4):383-9. PubMed ID: 19431930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal stromal ablation with femtosecond ultraviolet pulses in rabbits.
    Danieliene E; Gabryte E; Danielius R; Vengris M; Vaiceliunaite A; Morkunas V; Ruksenas O
    J Cataract Refract Surg; 2013 Feb; 39(2):258-67. PubMed ID: 23232256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal tissue interactions of a new 345 nm ultraviolet femtosecond laser.
    Hammer CM; Petsch C; Klenke J; Skerl K; Paulsen F; Kruse FE; Seiler T; Menzel-Severing J
    J Cataract Refract Surg; 2015 Jun; 41(6):1279-88. PubMed ID: 26189383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision, morphology, and histology of corneal flap cuts using a 200-kHz femtosecond laser.
    Khoramnia R; Salgado JP; Lohmann CP; Kobuch KA; von Mohrenfels CW
    Eur J Ophthalmol; 2012; 22(2):161-7. PubMed ID: 21623593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of corneal collagen crosslinking with riboflavin and ultraviolet-a irradiation on excimer laser surgery.
    Kampik D; Ralla B; Keller S; Hirschberg M; Friedl P; Geerling G
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3929-34. PubMed ID: 20207972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes.
    Kurtz RM; Horvath C; Liu HH; Krueger RR; Juhasz T
    J Refract Surg; 1998; 14(5):541-8. PubMed ID: 9791821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast (femtosecond) laser refractive surgery.
    Sugar A
    Curr Opin Ophthalmol; 2002 Aug; 13(4):246-9. PubMed ID: 12165709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers.
    Zheng Y; Zhou Y; Zhang J; Liu Q; Zhai C; Wang Y
    Cornea; 2015 Mar; 34(3):328-33. PubMed ID: 25603229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser LASIK flap preparation with conical incision and positional spikes.
    Jonas JB; Vossmerbaeumer U
    J Cataract Refract Surg; 2004 May; 30(5):1107-8. PubMed ID: 15130651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower energy to make a corneal flap with a 60 kHz femtosecond laser reduces flap inflammation and corneal stromal cell death but weakens flap adhesion.
    Kim JY; Joo SW; Sunwoo JH; Kim ES; Kim MJ; Tchah H
    Korean J Ophthalmol; 2013 Apr; 27(2):120-5. PubMed ID: 23543236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser.
    Wang BG; Lohmann CP; Riemann I; Schubert H; Halbhuber KJ; König K
    J Refract Surg; 2008 Oct; 24(8):833-9. PubMed ID: 18856239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complications of LASIK flaps made by the IntraLase 15- and 30-kHz femtosecond lasers.
    Haft P; Yoo SH; Kymionis GD; Ide T; O'Brien TP; Culbertson WW
    J Refract Surg; 2009 Nov; 25(11):979-84. PubMed ID: 19921765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range.
    Vengris M; Gabryte E; Aleknavicius A; Barkauskas M; Ruksenas O; Vaiceliunaite A; Danielius R
    J Cataract Refract Surg; 2010 Sep; 36(9):1579-87. PubMed ID: 20692573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-assisted in situ keratomileusis flap creation with the three-dimensional, transportable Ziemer FEMTO LDV model Z6 I femtosecond laser.
    Pietilä J; Huhtala A; Mäkinen P; Salmenhaara K; Uusitalo H
    Acta Ophthalmol; 2014 Nov; 92(7):650-5. PubMed ID: 24373615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology.
    Holzer MP; Rabsilber TM; Auffarth GU
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2828-31. PubMed ID: 16799021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].
    Vogel A; Freidank S; Linz N
    Ophthalmologe; 2014 Jun; 111(6):531-8. PubMed ID: 24942119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opaque bubble layer incidence in Femtosecond laser-assisted LASIK: comparison among different flap design parameters.
    Mastropasqua L; Calienno R; Lanzini M; Salgari N; De Vecchi S; Mastropasqua R; Nubile M
    Int Ophthalmol; 2017 Jun; 37(3):635-641. PubMed ID: 27518898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of submicrojoule femtosecond laser corneal tissue dissection.
    Binder PS; Sarayba M; Ignacio T; Juhasz T; Kurtz R
    J Cataract Refract Surg; 2008 Jan; 34(1):146-52. PubMed ID: 18165095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.