BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19432806)

  • 1. Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis.
    Brody MS; Stewart V; Price CW
    Mol Microbiol; 2009 Jun; 72(5):1221-34. PubMed ID: 19432806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains.
    Nadezhdin EV; Brody MS; Price CW
    PLoS One; 2011; 6(9):e25418. PubMed ID: 21980452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis.
    Brody MS; Vijay K; Price CW
    J Bacteriol; 2001 Nov; 183(21):6422-8. PubMed ID: 11591687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis.
    Vijay K; Brody MS; Fredlund E; Price CW
    Mol Microbiol; 2000 Jan; 35(1):180-8. PubMed ID: 10632888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of RsbQ, a stress-response regulator in Bacillus subtilis.
    Kaneko T; Tanaka N; Kumasaka T
    Protein Sci; 2005 Feb; 14(2):558-65. PubMed ID: 15632289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis.
    Ho K; Bradshaw N
    J Biol Chem; 2021; 296():100518. PubMed ID: 33684446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase.
    Kang CM; Vijay K; Price CW
    Mol Microbiol; 1998 Oct; 30(1):189-96. PubMed ID: 9786195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases.
    Adler E; Donella-Deana A; Arigoni F; Pinna LA; Stragler P
    Mol Microbiol; 1997 Jan; 23(1):57-62. PubMed ID: 9004220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C.
    Delumeau O; Dutta S; Brigulla M; Kuhnke G; Hardwick SW; Völker U; Yudkin MD; Lewis RJ
    J Biol Chem; 2004 Sep; 279(39):40927-37. PubMed ID: 15263010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, crystallization and preliminary crystallographic analysis of the PAS domain of RsbP, a stress-response phosphatase from Bacillus subtilis.
    Makino M; Kondo S; Kaneko T; Baba S; Hirata K; Kumasaka T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):559-61. PubMed ID: 19478430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in Bacillus subtilis.
    Tran V; Geraci K; Midili G; Satterwhite W; Wright R; Bonilla CY
    J Basic Microbiol; 2019 Aug; 59(8):834-845. PubMed ID: 31210376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants for substrate specificity of the bacterial PP2C protein phosphatase tPphA from Thermosynechococcus elongatus.
    Su J; Forchhammer K
    FEBS J; 2013 Jan; 280(2):694-707. PubMed ID: 22212593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB.
    Tzeng YL; Feher VA; Cavanagh J; Perego M; Hoch JA
    Biochemistry; 1998 Nov; 37(47):16538-45. PubMed ID: 9843420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of PrpC from Bacillus subtilis, a member of the PPM phosphatase family.
    Obuchowski M; Madec E; Delattre D; Boël G; Iwanicki A; Foulger D; Séror SJ
    J Bacteriol; 2000 Oct; 182(19):5634-8. PubMed ID: 10986276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a family of bacterial response regulator aspartyl-phosphate (RAP) phosphatases.
    Reizer J; Reizer A; Perego M; Saier MH
    Microb Comp Genomics; 1997; 2(2):103-11. PubMed ID: 9689219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane Prolines Mediate Signal Sensing and Decoding in Bacillus subtilis DesK Histidine Kinase.
    Fernández P; Porrini L; Albanesi D; Abriata LA; Dal Peraro M; de Mendoza D; Mansilla MC
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two surfaces of a conserved interdomain linker differentially affect output from the RST sensing module of the Bacillus subtilis stressosome.
    Gaidenko TA; Bie X; Baldwin EP; Price CW
    J Bacteriol; 2012 Aug; 194(15):3913-21. PubMed ID: 22609918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Bacillus subtilis regulator protein SpoIIE shares functional and structural similarities with eukaryotic protein phosphatases 2C.
    Schroeter R; Schlisio S; Lucet I; Yudkin M; Borriss R
    FEMS Microbiol Lett; 1999 May; 174(1):117-23. PubMed ID: 10234829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide.
    Diaz AR; Core LJ; Jiang M; Morelli M; Chiang CH; Szurmant H; Perego M
    J Bacteriol; 2012 Mar; 194(6):1378-88. PubMed ID: 22267516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade.
    Avila-Pérez M; van der Steen JB; Kort R; Hellingwerf KJ
    J Bacteriol; 2010 Feb; 192(3):755-62. PubMed ID: 19948797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.