BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19433094)

  • 1. Evidence for unique structural change of thin filaments upon calcium activation of insect flight muscle.
    Iwamoto H
    J Mol Biol; 2009 Jul; 390(1):99-111. PubMed ID: 19433094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data.
    al-Khayat HA; Yagi N; Squire JM
    J Mol Biol; 1995 Oct; 252(5):611-32. PubMed ID: 7563078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin.
    Murakami K; Yumoto F; Ohki SY; Yasunaga T; Tanokura M; Wakabayashi T
    J Mol Biol; 2005 Sep; 352(1):178-201. PubMed ID: 16061251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium ions and the structure of muscle actin filament. An X-ray diffraction study.
    Popp D; Maéda Y
    J Mol Biol; 1993 Jan; 229(2):279-85. PubMed ID: 8429546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band.
    Squire JM; Roessle M; Knupp C
    J Mol Biol; 2004 Nov; 343(5):1345-63. PubMed ID: 15491617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes in the muscle thin filament during contractions caused by single and double electrical pulses.
    Matsuo T; Yagi N
    J Mol Biol; 2008 Nov; 383(5):1019-36. PubMed ID: 18817786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments.
    Sakuma A; Kimura-Sakiyama C; Onoue A; Shitaka Y; Kusakabe T; Miki M
    Biochemistry; 2006 Aug; 45(31):9550-8. PubMed ID: 16878989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structural changes in actin filaments during binding with phosphofructokinase (F-protein), detected using an optical diffraction method].
    Podlubnaia ZA; Shpagina MD; Freĭdina NA; Udal'tsov SN
    Biofizika; 1996; 41(1):73-7. PubMed ID: 8714461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equatorial A-band and I-band X-ray diffraction from relaxed and active fish muscle. Further details of myosin crossbridge behaviour.
    Harford J; Luther P; Squire J
    J Mol Biol; 1994 Jun; 239(4):500-12. PubMed ID: 8006964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic polymorphism of single actin molecules in the actin filament.
    Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T
    Nat Chem Biol; 2006 Feb; 2(2):83-6. PubMed ID: 16415860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction.
    Sugimoto Y; Takezawa Y; Matsuo T; Ueno Y; Minakata S; Tanaka H; Wakabayashi K
    Biochem Biophys Res Commun; 2008 Apr; 369(1):100-8. PubMed ID: 18082133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conformational change in the actin subunit can change the flexibility of the actin filament.
    Orlova A; Egelman EH
    J Mol Biol; 1993 Jul; 232(2):334-41. PubMed ID: 8345515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Direct proof of the existence of Ca2+-induced structural changes in miosin-containing thick filaments of vertebrate skeletal muscles].
    Lednev VV; Srebnitskaia LK; Kornev AN; Malinchik SB
    Biofizika; 1982; 27(3):493-7. PubMed ID: 6980017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the structural transition of muscle thin filaments observed by fluorescence resonance energy transfer.
    Shitaka Y; Kimura C; Iio T; Miki M
    Biochemistry; 2004 Aug; 43(33):10739-47. PubMed ID: 15311935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating the contraction of insect flight muscle.
    Bullard B; Pastore A
    J Muscle Res Cell Motil; 2011 Dec; 32(4-5):303-13. PubMed ID: 22105701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight muscle-specific Pro-Ala-rich extension of troponin is important for maintaining the insect-type myofilament lattice integrity.
    Iwamoto H
    J Struct Biol; 2013 Jul; 183(1):33-9. PubMed ID: 23707700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D structure of relaxed fish muscle myosin filaments by single particle analysis.
    Al-Khayat HA; Morris EP; Kensler RW; Squire JM
    J Struct Biol; 2006 Aug; 155(2):202-17. PubMed ID: 16731006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse actin sliding triggers strong myosin binding that moves tropomyosin.
    Bekyarova TI; Reedy MC; Baumann BA; Tregear RT; Ward A; Krzic U; Prince KM; Perz-Edwards RJ; Reconditi M; Gore D; Irving TC; Reedy MK
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10372-7. PubMed ID: 18658238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation?
    Squire JM; Bekyarova T; Farman G; Gore D; Rajkumar G; Knupp C; Lucaveche C; Reedy MC; Reedy MK; Irving TC
    J Mol Biol; 2006 Sep; 361(5):823-38. PubMed ID: 16887144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Troponin is a potential regulator for actomyosin interactions.
    Mizuno H; Honda H
    J Biochem; 2006 Feb; 139(2):289-93. PubMed ID: 16452317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.