These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 19433094)
1. Evidence for unique structural change of thin filaments upon calcium activation of insect flight muscle. Iwamoto H J Mol Biol; 2009 Jul; 390(1):99-111. PubMed ID: 19433094 [TBL] [Abstract][Full Text] [Related]
2. Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data. al-Khayat HA; Yagi N; Squire JM J Mol Biol; 1995 Oct; 252(5):611-32. PubMed ID: 7563078 [TBL] [Abstract][Full Text] [Related]
3. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. Murakami K; Yumoto F; Ohki SY; Yasunaga T; Tanokura M; Wakabayashi T J Mol Biol; 2005 Sep; 352(1):178-201. PubMed ID: 16061251 [TBL] [Abstract][Full Text] [Related]
4. Calcium ions and the structure of muscle actin filament. An X-ray diffraction study. Popp D; Maéda Y J Mol Biol; 1993 Jan; 229(2):279-85. PubMed ID: 8429546 [TBL] [Abstract][Full Text] [Related]
5. New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band. Squire JM; Roessle M; Knupp C J Mol Biol; 2004 Nov; 343(5):1345-63. PubMed ID: 15491617 [TBL] [Abstract][Full Text] [Related]
6. Structural changes in the muscle thin filament during contractions caused by single and double electrical pulses. Matsuo T; Yagi N J Mol Biol; 2008 Nov; 383(5):1019-36. PubMed ID: 18817786 [TBL] [Abstract][Full Text] [Related]
7. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Sakuma A; Kimura-Sakiyama C; Onoue A; Shitaka Y; Kusakabe T; Miki M Biochemistry; 2006 Aug; 45(31):9550-8. PubMed ID: 16878989 [TBL] [Abstract][Full Text] [Related]
8. [Structural changes in actin filaments during binding with phosphofructokinase (F-protein), detected using an optical diffraction method]. Podlubnaia ZA; Shpagina MD; Freĭdina NA; Udal'tsov SN Biofizika; 1996; 41(1):73-7. PubMed ID: 8714461 [TBL] [Abstract][Full Text] [Related]
9. Equatorial A-band and I-band X-ray diffraction from relaxed and active fish muscle. Further details of myosin crossbridge behaviour. Harford J; Luther P; Squire J J Mol Biol; 1994 Jun; 239(4):500-12. PubMed ID: 8006964 [TBL] [Abstract][Full Text] [Related]
10. Dynamic polymorphism of single actin molecules in the actin filament. Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T Nat Chem Biol; 2006 Feb; 2(2):83-6. PubMed ID: 16415860 [TBL] [Abstract][Full Text] [Related]
11. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction. Sugimoto Y; Takezawa Y; Matsuo T; Ueno Y; Minakata S; Tanaka H; Wakabayashi K Biochem Biophys Res Commun; 2008 Apr; 369(1):100-8. PubMed ID: 18082133 [TBL] [Abstract][Full Text] [Related]
12. A conformational change in the actin subunit can change the flexibility of the actin filament. Orlova A; Egelman EH J Mol Biol; 1993 Jul; 232(2):334-41. PubMed ID: 8345515 [TBL] [Abstract][Full Text] [Related]
13. [Direct proof of the existence of Ca2+-induced structural changes in miosin-containing thick filaments of vertebrate skeletal muscles]. Lednev VV; Srebnitskaia LK; Kornev AN; Malinchik SB Biofizika; 1982; 27(3):493-7. PubMed ID: 6980017 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the structural transition of muscle thin filaments observed by fluorescence resonance energy transfer. Shitaka Y; Kimura C; Iio T; Miki M Biochemistry; 2004 Aug; 43(33):10739-47. PubMed ID: 15311935 [TBL] [Abstract][Full Text] [Related]
15. Regulating the contraction of insect flight muscle. Bullard B; Pastore A J Muscle Res Cell Motil; 2011 Dec; 32(4-5):303-13. PubMed ID: 22105701 [TBL] [Abstract][Full Text] [Related]
16. Flight muscle-specific Pro-Ala-rich extension of troponin is important for maintaining the insect-type myofilament lattice integrity. Iwamoto H J Struct Biol; 2013 Jul; 183(1):33-9. PubMed ID: 23707700 [TBL] [Abstract][Full Text] [Related]
17. 3D structure of relaxed fish muscle myosin filaments by single particle analysis. Al-Khayat HA; Morris EP; Kensler RW; Squire JM J Struct Biol; 2006 Aug; 155(2):202-17. PubMed ID: 16731006 [TBL] [Abstract][Full Text] [Related]
18. Reverse actin sliding triggers strong myosin binding that moves tropomyosin. Bekyarova TI; Reedy MC; Baumann BA; Tregear RT; Ward A; Krzic U; Prince KM; Perz-Edwards RJ; Reconditi M; Gore D; Irving TC; Reedy MK Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10372-7. PubMed ID: 18658238 [TBL] [Abstract][Full Text] [Related]
19. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation? Squire JM; Bekyarova T; Farman G; Gore D; Rajkumar G; Knupp C; Lucaveche C; Reedy MC; Reedy MK; Irving TC J Mol Biol; 2006 Sep; 361(5):823-38. PubMed ID: 16887144 [TBL] [Abstract][Full Text] [Related]
20. Troponin is a potential regulator for actomyosin interactions. Mizuno H; Honda H J Biochem; 2006 Feb; 139(2):289-93. PubMed ID: 16452317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]