These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19433223)

  • 1. Characterization of 24-well microtiter plate reactors for a complex multistep bioconversion: from sitosterol to androstenedione.
    Marques MP; Magalhães S; Cabral JM; Fernandes P
    J Biotechnol; 2009 May; 141(3-4):174-80. PubMed ID: 19433223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microwell platform for the scale-up of a multistep bioconversion to bench-scale reactors: sitosterol side-chain cleavage.
    Marques MP; Cabral JM; Fernandes P
    Biotechnol J; 2010 Apr; 5(4):402-12. PubMed ID: 20235144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Sitosterol Bioconversion to Androstenedione in Microtiter Plates.
    Marques MPC; Fernandes P
    Methods Mol Biol; 2017; 1645():167-176. PubMed ID: 28710628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Sitosterol Bioconversion in Small-Scale Devices: From Microtiter Plates to Microfluidic Reactors.
    Marques MPC; Aranda Hernandez J; Fernandes P
    Methods Mol Biol; 2023; 2704():201-219. PubMed ID: 37642846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling-up of complex whole-cell bioconversions in conventional and non-conventional media.
    Marques MP; de Carvalho CC; Cabral JM; Fernandes P
    Biotechnol Bioeng; 2010 Jul; 106(4):619-26. PubMed ID: 20503299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth.
    Kensy F; Zimmermann HF; Knabben I; Anderlei T; Trauthwein H; Dingerdissen U; Büchs J
    Biotechnol Bioeng; 2005 Mar; 89(6):698-708. PubMed ID: 15696519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Side chain cleavage of sterols by Mycobacterium sp. M12].
    Zhang LQ; Bian EP; Wang Y
    Yao Xue Xue Bao; 1992; 27(12):903-7. PubMed ID: 1299139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum.
    Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR
    Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of mycobacterial cells onto silicone--assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol.
    Claudino MJ; Soares D; Van Keulen F; Marques MP; Cabral JM; Fernandes P
    Bioresour Technol; 2008 May; 99(7):2304-11. PubMed ID: 17596940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents.
    Dias AC; Cabral JM; Pinheiro HM
    Enzyme Microb Technol; 1994 Aug; 16(8):708-14. PubMed ID: 7765079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium sp. mutant strain producing 9alpha-hydroxyandrostenedione from sitosterol.
    Donova MV; Gulevskaya SA; Dovbnya DV; Puntus IF
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):671-8. PubMed ID: 15647937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behaviour of Mycobacterium sp. NRRL B-3805 whole cells in aqueous, organic-aqueous and organic media studied by fluorescence microscopy.
    De Carvalho CC; Cruz A; Angelova B; Fernandes P; Pons MN; Pinheiro HM; Cabral JM; Da Fonseca MM
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):695-701. PubMed ID: 14689247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sitosterol bioconversion with resting cells in liquid polymer based systems.
    Carvalho F; Marques MP; de Carvalho CC; Cabral JM; Fernandes P
    Bioresour Technol; 2009 Sep; 100(17):4050-3. PubMed ID: 19362822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steroid transformation by mutants of Mycobacterium sp. with altered response to antibiotics.
    Barthakur S; Roy MK; Bera SK; Ghosh AC
    J Basic Microbiol; 1996; 36(6):383-7. PubMed ID: 8956488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of gas-liquid mass transfer phenomena in microtiter plates.
    Hermann R; Lehmann M; Büchs J
    Biotechnol Bioeng; 2003 Jan; 81(2):178-86. PubMed ID: 12451554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics.
    Malaviya A; Gomes J
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1235-9. PubMed ID: 18716814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation.
    John GT; Klimant I; Wittmann C; Heinzle E
    Biotechnol Bioeng; 2003 Mar; 81(7):829-36. PubMed ID: 12557316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Microbial degradation of beta-sitosterol: production of delta 4-androstene-3,17-dione].
    Wang JY; Yin ZH; Zhou WS
    Yao Xue Xue Bao; 1992; 27(1):22-5. PubMed ID: 1529708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum.
    Yin Y
    Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol.
    Vidal M; Becerra J; Mondaca MA; Silva M
    Appl Microbiol Biotechnol; 2001 Oct; 57(3):385-9. PubMed ID: 11759690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.