These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 19433865)
1. Endosomal adaptor proteins APPL1 and APPL2 are novel activators of beta-catenin/TCF-mediated transcription. Rashid S; Pilecka I; Torun A; Olchowik M; Bielinska B; Miaczynska M J Biol Chem; 2009 Jul; 284(27):18115-28. PubMed ID: 19433865 [TBL] [Abstract][Full Text] [Related]
2. Mutually exclusive binding of APPL(PH) to BAR domain and Reptin regulates β-catenin dependent transcriptional events. Rashid S; Parveen Z; Ferdous S; Bibi N Comput Biol Chem; 2013 Dec; 47():48-55. PubMed ID: 23891720 [TBL] [Abstract][Full Text] [Related]
3. Functional characterization of the interactions between endosomal adaptor protein APPL1 and the NuRD co-repressor complex. Banach-Orlowska M; Pilecka I; Torun A; Pyrzynska B; Miaczynska M Biochem J; 2009 Oct; 423(3):389-400. PubMed ID: 19686092 [TBL] [Abstract][Full Text] [Related]
4. The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription. Weiske J; Huber O J Cell Sci; 2005 Jul; 118(Pt 14):3117-29. PubMed ID: 16014379 [TBL] [Abstract][Full Text] [Related]
5. TIS7 regulation of the beta-catenin/Tcf-4 target gene osteopontin (OPN) is histone deacetylase-dependent. Vietor I; Kurzbauer R; Brosch G; Huber LA J Biol Chem; 2005 Dec; 280(48):39795-801. PubMed ID: 16204248 [TBL] [Abstract][Full Text] [Related]
6. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Ye F; Chen Y; Hoang T; Montgomery RL; Zhao XH; Bu H; Hu T; Taketo MM; van Es JH; Clevers H; Hsieh J; Bassel-Duby R; Olson EN; Lu QR Nat Neurosci; 2009 Jul; 12(7):829-38. PubMed ID: 19503085 [TBL] [Abstract][Full Text] [Related]
7. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. Gan XQ; Wang JY; Xi Y; Wu ZL; Li YP; Li L J Cell Biol; 2008 Mar; 180(6):1087-100. PubMed ID: 18347071 [TBL] [Abstract][Full Text] [Related]
8. TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling. Feng Y; Lee N; Fearon ER Cancer Res; 2003 Dec; 63(24):8726-34. PubMed ID: 14695187 [TBL] [Abstract][Full Text] [Related]
9. Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Idogawa M; Masutani M; Shitashige M; Honda K; Tokino T; Shinomura Y; Imai K; Hirohashi S; Yamada T Cancer Res; 2007 Feb; 67(3):911-8. PubMed ID: 17283121 [TBL] [Abstract][Full Text] [Related]
10. Cross-talk between Rac1 GTPase and dysregulated Wnt signaling pathway leads to cellular redistribution of beta-catenin and TCF/LEF-mediated transcriptional activation. Esufali S; Bapat B Oncogene; 2004 Oct; 23(50):8260-71. PubMed ID: 15377999 [TBL] [Abstract][Full Text] [Related]
11. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Sinner D; Kordich JJ; Spence JR; Opoka R; Rankin S; Lin SC; Jonatan D; Zorn AM; Wells JM Mol Cell Biol; 2007 Nov; 27(22):7802-15. PubMed ID: 17875931 [TBL] [Abstract][Full Text] [Related]
12. The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex. Guo RJ; Funakoshi S; Lee HH; Kong J; Lynch JP Carcinogenesis; 2010 Feb; 31(2):159-66. PubMed ID: 19734199 [TBL] [Abstract][Full Text] [Related]
14. Differential use of functional domains by coiled-coil coactivator in its synergistic coactivator function with beta-catenin or GRIP1. Yang CK; Kim JH; Li H; Stallcup MR J Biol Chem; 2006 Feb; 281(6):3389-97. PubMed ID: 16344550 [TBL] [Abstract][Full Text] [Related]
15. Rac1 GTPase and the Rac1 exchange factor Tiam1 associate with Wnt-responsive promoters to enhance beta-catenin/TCF-dependent transcription in colorectal cancer cells. Buongiorno P; Pethe VV; Charames GS; Esufali S; Bapat B Mol Cancer; 2008 Sep; 7():73. PubMed ID: 18826597 [TBL] [Abstract][Full Text] [Related]
16. Membrane targeting by APPL1 and APPL2: dynamic scaffolds that oligomerize and bind phosphoinositides. Chial HJ; Wu R; Ustach CV; McPhail LC; Mobley WC; Chen YQ Traffic; 2008 Feb; 9(2):215-29. PubMed ID: 18034774 [TBL] [Abstract][Full Text] [Related]
17. The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. Lei S; Dubeykovskiy A; Chakladar A; Wojtukiewicz L; Wang TC J Biol Chem; 2004 Oct; 279(41):42492-502. PubMed ID: 15292219 [TBL] [Abstract][Full Text] [Related]
18. Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity. Benchabane H; Xin N; Tian A; Hafler BP; Nguyen K; Ahmed A; Ahmed Y EMBO J; 2011 Apr; 30(8):1444-58. PubMed ID: 21399610 [TBL] [Abstract][Full Text] [Related]
19. e2f1 Gene is a new member of Wnt/beta-catenin/Tcf-regulated genes. Abramova MV; Zatulovskiy EA; Svetlikova SB; Kukushkin AN; Pospelov VA Biochem Biophys Res Commun; 2010 Jan; 391(1):142-6. PubMed ID: 19900401 [TBL] [Abstract][Full Text] [Related]
20. Identification of a novel role of ZMIZ2 protein in regulating the activity of the Wnt/β-catenin signaling pathway. Lee SH; Zhu C; Peng Y; Johnson DT; Lehmann L; Sun Z J Biol Chem; 2013 Dec; 288(50):35913-24. PubMed ID: 24174533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]