BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1302 related articles for article (PubMed ID: 19433875)

  • 1. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications.
    Sassaroli E; Li KC; O'Neill BE
    Phys Med Biol; 2009 Sep; 54(18):5541-60. PubMed ID: 19717888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles in biology: beyond toxicity to cellular imaging.
    Murphy CJ; Gole AM; Stone JW; Sisco PN; Alkilany AM; Goldsmith EC; Baxter SC
    Acc Chem Res; 2008 Dec; 41(12):1721-30. PubMed ID: 18712884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.
    Bendix PM; Reihani SN; Oddershede LB
    ACS Nano; 2010 Apr; 4(4):2256-62. PubMed ID: 20369898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step.
    Jiménez E; Abderrafi K; Abargues R; Valdés JL; Martínez-Pastor JP
    Langmuir; 2010 May; 26(10):7458-63. PubMed ID: 20187628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation.
    Prasad V; Mikhailovsky A; Zasadzinski JA
    Langmuir; 2005 Aug; 21(16):7528-32. PubMed ID: 16042490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical organophosphate sensor based upon gold nanoparticle functionalized fumed silica gel.
    Newman JD; Roberts JM; Blanchard GJ
    Anal Chem; 2007 May; 79(9):3448-54. PubMed ID: 17378539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating.
    Elliott AM; Schwartz J; Wang J; Shetty AM; Bourgoyne C; O'Neal DP; Hazle JD; Stafford RJ
    Med Phys; 2009 Apr; 36(4):1351-8. PubMed ID: 19472642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro self-assembly of gold nanoparticle-coated poly(3-hydroxybutyrate) granules exhibiting plasmon-induced thermo-optical enhancements.
    Rey DA; Strickland AD; Kirui D; Niamsiri N; Batt CA
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1804-10. PubMed ID: 20565131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of nanoparticle-based metallodielectric inverse opals.
    Wang D; Li J; Chan CT; Salgueiriño-Maceira V; Liz-Marzán LM; Romanov S; Caruso F
    Small; 2005 Jan; 1(1):122-30. PubMed ID: 17193362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorption analysis and optimization of gold nanoshells.
    Tuersun P; Han X
    Appl Opt; 2013 Feb; 52(6):1325-9. PubMed ID: 23435006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption of gold nanoparticles with thin silica shell.
    Park YS; Liz-Marzán LM; Kasuya A; Kobayashi Y; Nagao D; Konno M; Mamykin S; Dmytruk A; Takeda M; Ohuchi N
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3503-6. PubMed ID: 17252799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation.
    Gorin DA; Portnov SA; Inozemtseva OA; Luklinska Z; Yashchenok AM; Pavlov AM; Skirtach AG; Möhwald H; Sukhorukov GB
    Phys Chem Chem Phys; 2008 Dec; 10(45):6899-905. PubMed ID: 19015796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-related third-order optical nonlinearities of Au nanoparticle arrays.
    Wang K; Long H; Fu M; Yang G; Lu P
    Opt Express; 2010 Jun; 18(13):13874-9. PubMed ID: 20588520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.