BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19434662)

  • 1. Signalling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering.
    Wang L; Singh M; Bonewald LF; Detamore MS
    J Tissue Eng Regen Med; 2009 Jul; 3(5):398-404. PubMed ID: 19434662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds.
    Wang L; Dormer NH; Bonewald LF; Detamore MS
    Tissue Eng Part A; 2010 Jun; 16(6):1937-48. PubMed ID: 20070186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin/PLLA sponge-like scaffolds allow proliferation and osteogenic differentiation of human mesenchymal stromal cells.
    Mattii L; Battolla B; D'Alessandro D; Trombi L; Pacini S; Cascone MG; Lazzeri L; Bernardini N; Dolfi A; Galimberti S; Petrini M
    Macromol Biosci; 2008 Sep; 8(9):819-26. PubMed ID: 18504804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F; Zhang YC; Zhou H; Guo YC; Su XX
    J Biomed Mater Res A; 2014 Mar; 102(3):760-8. PubMed ID: 23564567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation.
    Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ
    Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold.
    Lee JH; Rhie JW; Oh DY; Ahn ST
    Biochem Biophys Res Commun; 2008 Jun; 370(3):456-60. PubMed ID: 18395007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells.
    Wang KX; Xu LL; Rui YF; Huang S; Lin SE; Xiong JH; Li YH; Lee WY; Li G
    PLoS One; 2015; 10(3):e0120593. PubMed ID: 25799169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds.
    Richardson SM; Curran JM; Chen R; Vaughan-Thomas A; Hunt JA; Freemont AJ; Hoyland JA
    Biomaterials; 2006 Aug; 27(22):4069-78. PubMed ID: 16569429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.
    Wang P; Liu X; Zhao L; Weir MD; Sun J; Chen W; Man Y; Xu HH
    Acta Biomater; 2015 May; 18():236-48. PubMed ID: 25712391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
    Zhang ZY; Teoh SH; Chong MS; Schantz JT; Fisk NM; Choolani MA; Chan J
    Stem Cells; 2009 Jan; 27(1):126-37. PubMed ID: 18832592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field.
    Arjmand M; Ardeshirylajimi A; Maghsoudi H; Azadian E
    J Cell Physiol; 2018 Feb; 233(2):1061-1070. PubMed ID: 28419435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering.
    Wang L; Wang P; Weir MD; Reynolds MA; Zhao L; Xu HH
    Biomed Mater; 2016 Nov; 11(6):065008. PubMed ID: 27811389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering.
    Wang L; Tran I; Seshareddy K; Weiss ML; Detamore MS
    Tissue Eng Part A; 2009 Aug; 15(8):2259-66. PubMed ID: 19260778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.
    Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR
    J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.