BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1943481)

  • 21. Formation of mitochondrial phospholipid adducts by nephrotoxic cysteine conjugate metabolites.
    Hayden PJ; Welsh CJ; Yang Y; Schaefer WH; Ward AJ; Stevens JL
    Chem Res Toxicol; 1992; 5(2):232-7. PubMed ID: 1643252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the mechanism of nephrotoxicity and nephrocarcinogenicity of halogenated alkenes.
    Lock EA
    Crit Rev Toxicol; 1988; 19(1):23-42. PubMed ID: 3056657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alterations of the renal function in the isolated perfused rat kidney system after in vivo and in vitro application of S-(1,2-dichlorovinyl)-L-cysteine and S-(2,2-dichlorovinyl)-L-cysteine.
    Ilinskaja O; Vamvakas S
    Arch Toxicol; 1996; 70(3-4):224-9. PubMed ID: 8825681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of toxic glutathione conjugates from halogenated alkenes.
    Dekant W
    Toxicol Lett; 2003 Sep; 144(1):49-54. PubMed ID: 12919723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of renal cysteine conjugate beta-lyase in the mechanism of compound A nephrotoxicity in rats.
    Kharasch ED; Thorning D; Garton K; Hankins DC; Kilty CG
    Anesthesiology; 1997 Jan; 86(1):160-71. PubMed ID: 9009951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conjugation and bioactivation of chlorotrifluoroethylene.
    Bonhaus DW; Gandolfi AJ
    Life Sci; 1981 Dec; 29(23):2399-405. PubMed ID: 7321765
    [No Abstract]   [Full Text] [Related]  

  • 27. Renal processing of glutathione conjugates. Role in nephrotoxicity.
    Elfarra AA; Anders MW
    Biochem Pharmacol; 1984 Dec; 33(23):3729-32. PubMed ID: 6508831
    [No Abstract]   [Full Text] [Related]  

  • 28. Biotransformation of L-cysteine S-conjugates and N-acetyl-L-cysteine S-conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) in human kidney in vitro: interindividual variability in N-acetylation, N-deacetylation, and beta-lyase-catalyzed metabolism.
    Gul Altuntas T; Kharasch ED
    Drug Metab Dispos; 2002 Feb; 30(2):148-54. PubMed ID: 11792683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of L-cysteine S-conjugates and N-(trideuteroacetyl)-L-cysteine S-conjugates of four fluoroethylenes in the rat. Role of balance of deacetylation and acetylation in relation to the nephrotoxicity of mercapturic acids.
    Commandeur JN; Stijntjes GJ; Wijngaard J; Vermeulen NP
    Biochem Pharmacol; 1991 Jun; 42(1):31-8. PubMed ID: 2069595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation.
    Vamvakas S; Kremling E; Dekant W
    Biochem Pharmacol; 1989 Jul; 38(14):2297-304. PubMed ID: 2751695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic activation and detoxication of nephrotoxic cysteine and homocysteine S-conjugates.
    Elfarra AA; Lash LH; Anders MW
    Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2667-71. PubMed ID: 3458225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxic, halogenated cysteine S-conjugates and targeting of mitochondrial enzymes of energy metabolism.
    Cooper AJ; Bruschi SA; Anders MW
    Biochem Pharmacol; 2002 Aug; 64(4):553-64. PubMed ID: 12167474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake of nephrotoxic S-conjugates by isolated rat renal proximal tubular cells.
    Lash LH; Anders MW
    J Pharmacol Exp Ther; 1989 Feb; 248(2):531-7. PubMed ID: 2918469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo and in vitro nephrotoxicity of the cysteine conjugate of hexachlorobutadiene.
    Jaffe DR; Hassall CD; Brendel K; Gandolfi AJ
    J Toxicol Environ Health; 1983; 11(4-6):857-67. PubMed ID: 6620416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.
    McGoldrick TA; Lock EA; Rodilla V; Hawksworth GM
    Arch Toxicol; 2003 Jul; 77(7):365-70. PubMed ID: 12700887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitation of multiple pathways for the metabolism of nephrotoxic cysteine conjugates using selective inhibitors of L-alpha-hydroxy acid oxidase (L-amino acid oxidase) and cysteine conjugate beta-lyase.
    Stevens JL; Hatzinger PB; Hayden PJ
    Drug Metab Dispos; 1989; 17(3):297-303. PubMed ID: 2568912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of unscheduled DNA synthesis in a cultured line of renal epithelial cells exposed to cysteine S-conjugates of haloalkenes and haloalkanes.
    Vamvakas S; Dekant W; Henschler D
    Mutat Res; 1989 Apr; 222(4):329-35. PubMed ID: 2704384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of cytochrome P4503A in cysteine S-conjugates sulfoxidation and the nephrotoxicity of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) in rats.
    Sheffels P; Schroeder JL; Altuntas TG; Liggitt HD; Kharasch ED
    Chem Res Toxicol; 2004 Sep; 17(9):1177-89. PubMed ID: 15377151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytosolic C-S lyase activity in human kidney samples-relevance for the nephrotoxicity of halogenated alkenes in man.
    McCarthy RI; Lock EA; Hawksworth GM
    Toxicol Ind Health; 1994; 10(1-2):103-12. PubMed ID: 7570611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nephrotoxicity of the glutathione and cysteine conjugates of 2-bromo-2-chloro-1,1-difluoroethene.
    Finkelstein MB; Baggs RB; Anders MW
    J Pharmacol Exp Ther; 1992 Jun; 261(3):1248-52. PubMed ID: 1602387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.