These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19434814)

  • 1. Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal.
    Meyer CL; Vitalis R; Saumitou-Laprade P; Castric V
    Mol Ecol; 2009 May; 18(9):2050-62. PubMed ID: 19434814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species.
    Van Rossum F; Bonnin I; Fenart S; Pauwels M; Petit D; Saumitou-Laprade P
    Mol Ecol; 2004 Oct; 13(10):2959-67. PubMed ID: 15367112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of Arabidopsis halleri.
    Meyer CL; Pauwels M; Briset L; Godé C; Salis P; Bourceaux A; Souleman D; Frérot H; Verbruggen N
    New Phytol; 2016 Dec; 212(4):934-943. PubMed ID: 27504589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet.
    Herrera CM; Bazaga P
    Mol Ecol; 2008 Dec; 17(24):5378-90. PubMed ID: 19121004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata.
    Guggisberg A; Liu X; Suter L; Mansion G; Fischer MC; Fior S; Roumet M; Kretzschmar R; Koch MA; Widmer A
    Mol Ecol; 2018 Dec; 27(24):5088-5103. PubMed ID: 30411828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content.
    Kuta E; Jędrzejczyk-Korycińska M; Cieślak E; Rostański A; Szczepaniak M; Migdałek G; Wąsowicz P; Suda J; Combik M; Słomka A
    Plant Biol (Stuttg); 2014 Sep; 16(5):924-34. PubMed ID: 24400923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: implications for phytoremediation.
    Pauwels M; Willems G; Roosens N; Frérot H; Saumitou-Laprade P
    Mol Ecol; 2008 Jan; 17(1):108-19. PubMed ID: 17784915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri.
    Suryawanshi V; Talke IN; Weber M; Eils R; Brors B; Clemens S; Krämer U
    BMC Genomics; 2016 Dec; 17(Suppl 13):1034. PubMed ID: 28155655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats.
    Muller LA; Vangronsveld J; Colpaert JV
    Mol Ecol; 2007 Nov; 16(22):4728-37. PubMed ID: 17927704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in Heavy Metal Accumulation and Genetic Diversity at a Regional Scale Among Metallicolous and Non-Metallicolous Populations of the Facultative Metallophyte Biscutella laevigata subsp. laevigata.
    Pošćić F; Fellet G; Vischi M; Casolo V; Schat H; Marchiol L
    Int J Phytoremediation; 2015; 17(1-6):464-75. PubMed ID: 25495937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased genetic diversity of Viola tricolor L. (Violaceae) in metal-polluted environments.
    Słomka A; Sutkowska A; Szczepaniak M; Malec P; Mitka J; Kuta E
    Chemosphere; 2011 Apr; 83(4):435-42. PubMed ID: 21262522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps.
    Fischer MC; Rellstab C; Tedder A; Zoller S; Gugerli F; Shimizu KK; Holderegger R; Widmer A
    Mol Ecol; 2013 Nov; 22(22):5594-607. PubMed ID: 24102711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae).
    Pauwels M; Frérot H; Bonnin I; Saumitou-Laprade P
    J Evol Biol; 2006 Nov; 19(6):1838-50. PubMed ID: 17040381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic architecture of a plant adaptive trait: QTL mapping of intraspecific variation for tolerance to metal pollution in Arabidopsis halleri.
    Karam MJ; Souleman D; Schvartzman MS; Gallina S; Spielmann J; Poncet C; Bouchez O; Pauwels M; Hanikenne M; Frérot H
    Heredity (Edinb); 2019 Jun; 122(6):877-892. PubMed ID: 30670845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology.
    Briskine RV; Paape T; Shimizu-Inatsugi R; Nishiyama T; Akama S; Sese J; Shimizu KK
    Mol Ecol Resour; 2017 Sep; 17(5):1025-1036. PubMed ID: 27671113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony.
    Pauwels M; Saumitou-Laprade P; Holl AC; Petit D; Bonnin I
    Mol Ecol; 2005 Dec; 14(14):4403-14. PubMed ID: 16313601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genomic scanning using AFLP to detect candidate loci under selection in the finless porpoise (Neophocaena phocaenoides).
    Chen L; Yang G
    Genes Genet Syst; 2009 Aug; 84(4):307-13. PubMed ID: 20057168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis).
    Fischer MC; Foll M; Excoffier L; Heckel G
    Mol Ecol; 2011 Apr; 20(7):1450-62. PubMed ID: 21352386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri.
    Schvartzman MS; Corso M; Fataftah N; Scheepers M; Nouet C; Bosman B; Carnol M; Motte P; Verbruggen N; Hanikenne M
    New Phytol; 2018 Apr; 218(1):269-282. PubMed ID: 29292833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.
    Mattila TM; Aalto EA; Toivainen T; Niittyvuopio A; Piltonen S; Kuittinen H; Savolainen O
    Mol Ecol; 2016 Jan; 25(2):581-97. PubMed ID: 26600237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.