These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19434846)

  • 1. Characterization of activity landscapes using 2D and 3D similarity methods: consensus activity cliffs.
    Medina-Franco JL; Martínez-Mayorga K; Bender A; Marín RM; Giulianotti MA; Pinilla C; Houghten RA
    J Chem Inf Model; 2009 Feb; 49(2):477-91. PubMed ID: 19434846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consensus models of activity landscapes with multiple chemical, conformer, and property representations.
    Yongye AB; Byler K; Santos R; Martínez-Mayorga K; Maggiora GM; Medina-Franco JL
    J Chem Inf Model; 2011 Jun; 51(6):1259-70. PubMed ID: 21609014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs.
    Peltason L; Iyer P; Bajorath J
    J Chem Inf Model; 2010 Jun; 50(6):1021-33. PubMed ID: 20443603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Mar; 52(3):670-7. PubMed ID: 22394306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives.
    Pérez-Villanueva J; Santos R; Hernández-Campos A; Giulianotti MA; Castillo R; Medina-Franco JL
    Bioorg Med Chem; 2010 Nov; 18(21):7380-91. PubMed ID: 20888242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of multitarget activity landscapes that capture hierarchical activity cliff distributions.
    Dimova D; Wawer M; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Feb; 51(2):258-66. PubMed ID: 21275393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How similar are similarity searching methods? A principal component analysis of molecular descriptor space.
    Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW
    J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivity landscape modeling: chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets.
    Waddell J; Medina-Franco JL
    Bioorg Med Chem; 2012 Sep; 20(18):5443-52. PubMed ID: 22178187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity landscape modeling of PPAR ligands with dual-activity difference maps.
    Méndez-Lucio O; Pérez-Villanueva J; Castillo R; Medina-Franco JL
    Bioorg Med Chem; 2012 Jun; 20(11):3523-32. PubMed ID: 22564380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multitarget structure-activity relationships characterized by activity-difference maps and consensus similarity measure.
    Medina-Franco JL; Yongye AB; Pérez-Villanueva J; Houghten RA; Martínez-Mayorga K
    J Chem Inf Model; 2011 Sep; 51(9):2427-39. PubMed ID: 21842860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From activity cliffs to activity ridges: informative data structures for SAR analysis.
    Vogt M; Huang Y; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1848-56. PubMed ID: 21761918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic identification and classification of three-dimensional activity cliffs.
    Hu Y; Furtmann N; Gütschow M; Bajorath J
    J Chem Inf Model; 2012 Jun; 52(6):1490-8. PubMed ID: 22612566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps.
    Iyer P; Bajorath J
    Chem Biol Drug Des; 2011 Nov; 78(5):778-86. PubMed ID: 21895984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs.
    Hu X; Hu Y; Vogt M; Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 May; 52(5):1138-45. PubMed ID: 22489665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning structure-activity relationships with structure-activity similarity and related maps: from consensus activity cliffs to selectivity switches.
    Medina-Franco JL
    J Chem Inf Model; 2012 Oct; 52(10):2485-93. PubMed ID: 22989212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical substitutions that introduce activity cliffs across different compound classes and biological targets.
    Wassermann AM; Bajorath J
    J Chem Inf Model; 2010 Jul; 50(7):1248-56. PubMed ID: 20608746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Jul; 52(7):1806-11. PubMed ID: 22758389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.
    Bar-Haim S; Aharon A; Ben-Moshe T; Marantz Y; Senderowitz H
    J Chem Inf Model; 2009 Mar; 49(3):623-33. PubMed ID: 19231809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity metrics for ligands reflecting the similarity of the target proteins.
    Schuffenhauer A; Floersheim P; Acklin P; Jacoby E
    J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From activity cliffs to target-specific scoring models and pharmacophore hypotheses.
    Seebeck B; Wagener M; Rarey M
    ChemMedChem; 2011 Sep; 6(9):1630-9, 1533. PubMed ID: 21751401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.