BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 19434849)

  • 1. Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin.
    Zhou D; Zhang GG; Law D; Grant DJ; Schmitt EA
    Mol Pharm; 2008; 5(6):927-36. PubMed ID: 19434849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses.
    Zhou D; Grant DJ; Zhang GG; Law D; Schmitt EA
    J Pharm Sci; 2007 Jan; 96(1):71-83. PubMed ID: 17031846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization kinetics and molecular mobility of an amorphous active pharmaceutical ingredient: A case study with Biclotymol.
    Schammé B; Couvrat N; Malpeli P; Delbreilh L; Dupray V; Dargent É; Coquerel G
    Int J Pharm; 2015 Jul; 490(1-2):248-57. PubMed ID: 26003417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mobility, thermodynamics and stability of griseofulvin's ultraviscous and glassy states from dynamic heat capacity.
    Tombari E; Presto S; Johari GP; Shanker RM
    Pharm Res; 2008 Apr; 25(4):902-12. PubMed ID: 17899326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transformations undergone by Triton X-100 probed by differential scanning calorimetry and dielectric relaxation spectroscopy.
    Merino EG; Rodrigues C; Viciosa MT; Melo C; Sotomayor J; Dionísio M; Correia NT
    J Phys Chem B; 2011 Nov; 115(43):12336-47. PubMed ID: 21928821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward understanding the evolution of griseofulvin crystal structure to a mesophase after cryogenic milling.
    Feng T; Bates S; Carvajal MT
    Int J Pharm; 2009 Feb; 367(1-2):16-9. PubMed ID: 19013224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.
    Feng T; Pinal R; Carvajal MT
    J Pharm Sci; 2008 Aug; 97(8):3207-21. PubMed ID: 17990307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations on the effect of different cooling rates on the stability of amorphous indomethacin.
    Karmwar P; Boetker JP; Graeser KA; Strachan CJ; Rantanen J; Rades T
    Eur J Pharm Sci; 2011 Oct; 44(3):341-50. PubMed ID: 21884789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast surface crystallization of amorphous griseofulvin below T g.
    Zhu L; Jona J; Nagapudi K; Wu T
    Pharm Res; 2010 Aug; 27(8):1558-67. PubMed ID: 20414704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation dynamics and crystallization study of sildenafil in the liquid and glassy states.
    Kolodziejczyk K; Paluch M; Grzybowska K; Grzybowski A; Wojnarowska Z; Hawelek L; Ziolo JD
    Mol Pharm; 2013 Jun; 10(6):2270-82. PubMed ID: 23594226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of Crystal Growth of Amorphous Griseofulvin by Low-Concentration Poly(ethylene oxide): Aspects of Crystallization Kinetics and Molecular Mobility.
    Shi Q; Zhang C; Su Y; Zhang J; Zhou D; Cai T
    Mol Pharm; 2017 Jul; 14(7):2262-2272. PubMed ID: 28548840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy States.
    Kothari K; Ragoonanan V; Suryanarayanan R
    Mol Pharm; 2014 Sep; 11(9):3048-55. PubMed ID: 25105216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology and molecular mobility of amorphous blends of citric acid and paracetamol.
    Hoppu P; Hietala S; Schantz S; Juppo AM
    Eur J Pharm Biopharm; 2009 Jan; 71(1):55-63. PubMed ID: 18656536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mobility as an effective predictor of the physical stability of amorphous trehalose.
    Bhardwaj SP; Suryanarayanan R
    Mol Pharm; 2012 Nov; 9(11):3209-17. PubMed ID: 23003337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and crystallization kinetics of hydrated amorphous lactose above the glass transition temperature.
    Schmitt EA; Law D; Zhang GG
    J Pharm Sci; 1999 Mar; 88(3):291-6. PubMed ID: 10052985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into the crystallization tendency/kinetics of amorphous active pharmaceutical ingredients: A case study with dipyridamole and cinnarizine.
    Baghel S; Cathcart H; Redington W; O'Reilly NJ
    Eur J Pharm Biopharm; 2016 Jul; 104():59-71. PubMed ID: 27108783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of molecular dynamics of ethylene glycol dimethacrylate glass former.
    Viciosa MT; Correia NT; Salmerón Sanchez M; Carvalho AL; Romão MJ; Gómez Ribelles JL; Dionísio M
    J Phys Chem B; 2009 Oct; 113(43):14209-17. PubMed ID: 19803485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation Dynamics vs Crystallization Kinetics in the Amorphous State: The Case of Stiripentol.
    Ruiz GN; Romanini M; Barrio M; Tamarit JL; Pardo LC; Macovez R
    Mol Pharm; 2017 Nov; 14(11):3636-3643. PubMed ID: 28915351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.