These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 19434895)

  • 1. Atomic local neighborhood flexibility incorporation into a structured similarity measure for QSAR.
    Fechner N; Jahn A; Hinselmann G; Zell A
    J Chem Inf Model; 2009 Mar; 49(3):549-60. PubMed ID: 19434895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local indices for similarity analysis (LISA)-a 3D-QSAR formalism based on local molecular similarity.
    Verma J; Malde A; Khedkar S; Iyer R; Coutinho E
    J Chem Inf Model; 2009 Dec; 49(12):2695-707. PubMed ID: 19994892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QNA-based 'Star Track' QSAR approach.
    Filimonov DA; Zakharov AV; Lagunin AA; Poroikov VV
    SAR QSAR Environ Res; 2009 Oct; 20(7-8):679-709. PubMed ID: 20024804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear indices of the "molecular pseudograph's atom adjacency matrix": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors.
    Marrero-Ponce Y
    J Chem Inf Comput Sci; 2004; 44(6):2010-26. PubMed ID: 15554670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors.
    Renner S; Schwab CH; Gasteiger J; Schneider G
    J Chem Inf Model; 2006; 46(6):2324-32. PubMed ID: 17125176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic Modeling of Conformational Space for 3D Machine Learning Approaches.
    Jahn A; Hinselmann G; Fechner N; Henneges C; Zell A
    Mol Inform; 2010 May; 29(5):441-55. PubMed ID: 27463199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kernel approach to molecular similarity based on iterative graph similarity.
    Rupp M; Proschak E; Schneider G
    J Chem Inf Model; 2007; 47(6):2280-6. PubMed ID: 17985866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR models based on isomorphic and nonisomorphic data fusion for predicting the blood brain barrier permeability.
    Cuadrado MU; Ruiz IL; Gómez-Nieto MA
    J Comput Chem; 2007 May; 28(7):1252-60. PubMed ID: 17299834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity.
    Yuan H; Wang Y; Cheng Y
    J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a chirality-sensitive flexibility descriptor for 3+3D-QSAR.
    Dervarics M; Otvös F; Martinek TA
    J Chem Inf Model; 2006; 46(3):1431-8. PubMed ID: 16711763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-interaction quantitative structure--activity relationship (MI-QSAR) analyses of skin penetration enhancers.
    Zheng T; Hopfinger AJ; Esposito EX; Liu J; Tseng YJ
    J Chem Inf Model; 2008 Jun; 48(6):1238-56. PubMed ID: 18507373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MI-QSAR models for prediction of corneal permeability of organic compounds.
    Chen C; Yang J
    Acta Pharmacol Sin; 2006 Feb; 27(2):193-204. PubMed ID: 16412269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAUTION: popular "benchmark" data sets do not distinguish the merits of 3D QSAR methods.
    Manchester J; Czermiński R
    J Chem Inf Model; 2009 Jun; 49(6):1449-54. PubMed ID: 19438212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR studies of antiviral agents using molecular similarity analysis and structure-activity maps.
    Parakulam RR; Lesniewski ML; Taylor-McCabe KJ; Tsai C
    SAR QSAR Environ Res; 1999; 10(2-3):175-206. PubMed ID: 10491849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local lazy regression: making use of the neighborhood to improve QSAR predictions.
    Guha R; Dutta D; Jurs PC; Chen T
    J Chem Inf Model; 2006; 46(4):1836-47. PubMed ID: 16859315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LQTA-QSAR: a new 4D-QSAR methodology.
    Martins JP; Barbosa EG; Pasqualoto KF; Ferreira MM
    J Chem Inf Model; 2009 Jun; 49(6):1428-36. PubMed ID: 19422246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses of choline acetyltransferase inhibitors.
    Chandrasekaran V; McGaughey GB; Cavallito CJ; Bowen JP
    J Mol Graph Model; 2004 Sep; 23(1):69-76. PubMed ID: 15331055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new strategy to improve the predictive ability of the local lazy regression and its application to the QSAR study of melanin-concentrating hormone receptor 1 antagonists.
    Li J; Li S; Lei B; Liu H; Yao X; Liu M; Gramatica P
    J Comput Chem; 2010 Apr; 31(5):973-85. PubMed ID: 19670228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine for SAR/QSAR of phenethyl-amines.
    Niu B; Lu WC; Yang SS; Cai YD; Li GZ
    Acta Pharmacol Sin; 2007 Jul; 28(7):1075-86. PubMed ID: 17588345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.